Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7863-2021
https://doi.org/10.5194/acp-21-7863-2021
Research article
 | 
25 May 2021
Research article |  | 25 May 2021

Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM)

Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb

Related authors

Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023,https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022,https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary

Cited articles

An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, 2019. 
Baez-Villanueva, O., Zambrano-Bigiarini, M., Beck, H., Mcnamara, I., and Thinh, N.: RF-MEP: a novel random forest method for merging gridded precipitation products and ground-based measurements, Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 2020. 
Behrens, T., Schmidt, K., Viscarra, R., Gries, P., Scholten, T., and Macmillan, R.: Spatial modelling with Euclidean distance fields and machine learning, Eur. J. Soil Sci., 69, 757–770, 2018. 
Bessho, K., Date, K., Hayashi, M., Ikeda, A., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 2016, 94, 151–183, 2016. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Download
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Share
Altmetrics
Final-revised paper
Preprint