Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12483-2020
https://doi.org/10.5194/acp-20-12483-2020
Research article
 | 
31 Oct 2020
Research article |  | 31 Oct 2020

Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion

Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke

Related authors

Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022,https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022,https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021,https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021,https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Lateral meltwater transfer across an Antarctic ice shelf
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020,https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023,https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
A mountain ridge model for quantifying oblique mountain wave propagation and distribution
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023,https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Weakening of the tropical tropopause layer cold trap with global warming
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023,https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary
Vortex Preconditioning of the 2021 Sudden Stratospheric Warming: Barotropic/Baroclinic Instability Associated with the Double Westerly Jets
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1044,https://doi.org/10.5194/egusphere-2023-1044, 2023
Short summary
On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023,https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary

Cited articles

Alexander, J. M. and Teitelbaum, H.: Observation and analysis of a large amplitude mountain wave event over the Antarctic Peninsula, J. Geophys. Res., 112, D21103, https://doi.org/10.1029/2006JD008368, 2007. 
Alexander, S. P., Klekociuk, A. R., Pitts, M. C., McDonald, A. J., and Arevalo-Torres, A.: The effect of orographic gravity waves on Antarctic polar stratosphere cloud occurrence and composition, J. Geophys. Res., 116, D06109, https://doi.org/10.1029/2010JD015184, 2011. 
Alexander, S. P., Klekociuk, A. R., McDonald, A. J., and Pitts, M. C.: Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic, J. Geophys. Res., 118, 11493–11507, https://doi.org/10.1002/2013JD020122, 2013. 
Alexander, S., Orr, A., Webster, S., and Murphy, D.: Observations and fine-scale model simulations of gravity waves over Davis, East Antarctica (69 S, 78 E), J. Geophys. Res., 122, 7355–7370, https://doi.org/10.1002/2017JD026615, 2017.  
Download
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Altmetrics
Final-revised paper
Preprint