Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 6481–6495, 2019
https://doi.org/10.5194/acp-19-6481-2019
Atmos. Chem. Phys., 19, 6481–6495, 2019
https://doi.org/10.5194/acp-19-6481-2019

Research article 16 May 2019

Research article | 16 May 2019

Assessment of dicarbonyl contributions to secondary organic aerosols over China using RAMS-CMAQ

Jialin Li et al.

Related authors

Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021,https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021,https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021,https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-637,https://doi.org/10.5194/acp-2021-637, 2021
Revised manuscript under review for ACP
Short summary
Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe, and Xinglong in North China
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021,https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Aerosol transport pathways and source attribution in China during the COVID-19 outbreak
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021,https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary
Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021,https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021,https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary

Cited articles

Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res.-Atmos., 101, 29239–29253, https://doi.org/10.1029/96jd00126, 1996. 
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmonsenv.2005.09.087, 2006. 
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006. 
Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 272–288, 2006. 
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements, Environ. Sci. Technol., 42, 8798–8802, https://doi.org/10.1021/es801192n, 2008. 
Download
Short summary
There are large uncertainties in the sources of secondary organic aerosol (SOA). Simulations of SOA concentrations in China with aqueous SOA formation pathway updated and glyoxal simulation improved reveal that dicarbonyl-derived SOA (AAQ) can explain a significant fraction of the unaccounted SOA sources. The mean AAQ can contribute 60.6 % and 64.5 % to the total concentration of SOA in summer and fall, respectively.
Altmetrics
Final-revised paper
Preprint