Articles | Volume 17, issue 11
Atmos. Chem. Phys., 17, 6925–6955, 2017
https://doi.org/10.5194/acp-17-6925-2017

Special issue: Global Mercury Observation System – Atmosphere...

Atmos. Chem. Phys., 17, 6925–6955, 2017
https://doi.org/10.5194/acp-17-6925-2017

Research article 13 Jun 2017

Research article | 13 Jun 2017

Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

Johannes Bieser et al.

Related authors

Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021,https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Atmospheric mercury in the Southern Hemisphere – Part 2: Source apportionment analysis at Cape Point station, South Africa
Johannes Bieser, Hélène Angot, Franz Slemr, and Lynwill Martin
Atmos. Chem. Phys., 20, 10427–10439, https://doi.org/10.5194/acp-20-10427-2020,https://doi.org/10.5194/acp-20-10427-2020, 2020
Short summary
Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast
Danilo Custodio, Ralf Ebinghaus, T. Gerard Spain, and Johannes Bieser
Atmos. Chem. Phys., 20, 7929–7939, https://doi.org/10.5194/acp-20-7929-2020,https://doi.org/10.5194/acp-20-7929-2020, 2020
Short summary
Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
Franz Slemr, Lynwill Martin, Casper Labuschagne, Thumeka Mkololo, Hélène Angot, Olivier Magand, Aurélien Dommergue, Philippe Garat, Michel Ramonet, and Johannes Bieser
Atmos. Chem. Phys., 20, 7683–7692, https://doi.org/10.5194/acp-20-7683-2020,https://doi.org/10.5194/acp-20-7683-2020, 2020
Short summary
Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019,https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Error induced by neglecting subgrid chemical segregation due to inefficient turbulent mixing in regional chemical-transport models in urban environments
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021,https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Statistical regularization for trend detection: an integrated approach for detecting long-term trends from sparse tropospheric ozone profiles
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, and Valérie Thouret
Atmos. Chem. Phys., 20, 9915–9938, https://doi.org/10.5194/acp-20-9915-2020,https://doi.org/10.5194/acp-20-9915-2020, 2020
Short summary
The influence of typhoons on atmospheric composition deduced from IAGOS measurements over Taipei
Frank Roux, Hannah Clark, Kuo-Ying Wang, Susanne Rohs, Bastien Sauvage, and Philippe Nédélec
Atmos. Chem. Phys., 20, 3945–3963, https://doi.org/10.5194/acp-20-3945-2020,https://doi.org/10.5194/acp-20-3945-2020, 2020
Short summary
Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020,https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell
Huang Yang, Darryn W. Waugh, Clara Orbe, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, Patrick Jöckel, Susan E. Strahan, Kane A. Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019,https://doi.org/10.5194/acp-19-5511-2019, 2019
Short summary

Cited articles

Allen, D. J., Dibb, J. E., Ridley, B., Pickering, K. E., and Talbot, R. W.: An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations, J. Geophys. Res., 108, 8355, https://doi.org/10.1029/2001JD001428, 2003.
AMAP/UNEP: Technical Background Report for the Global Mercury Assessment, Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, vi, 263 pp., available at: https://www.amap.no/documents/doc/ (last access: 1 November 2016), 2013a.
AMAP/UNEP: Geospatially distributed mercury emissions dataset 2010v1, available at: http://www.amap.no/mercury-emissions (last access: 1 November 2016), 2013b.
Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M. S., and Jaffe, D. A.: Fast time resolution oxidized mercury measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX), Environ. Sci. Technol., 47, 7285–7294, https://doi.org/10.1021/es303916v, 2013.
Ambrose, J. L., Gratz, L. E., Jaffe, D. A., Campos, T., Flocke, F. M., Knapp, D. J., Stechman, D. M., Stell, M., Weinheimer, A., Cantrell, C., and Mauldin, R. L.: Mercury emission ratios from coal-fired power plants in the Southeastern United States during NOMADSS, Environ. Sci. Technol., 49, 10389–10387, https://doi.org/10.1021/acs.est.5b01755, 2015.
Download
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Altmetrics
Final-revised paper
Preprint