Articles | Volume 18, issue 11
Atmos. Chem. Phys., 18, 8079–8096, 2018
https://doi.org/10.5194/acp-18-8079-2018
Atmos. Chem. Phys., 18, 8079–8096, 2018
https://doi.org/10.5194/acp-18-8079-2018
Research article
08 Jun 2018
Research article | 08 Jun 2018

El Niño Southern Oscillation influence on the Asian summer monsoon anticyclone

Xiaolu Yan et al.

Related authors

Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021,https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary
The efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019,https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Observational evidence of particle hygroscopic growth in the upper troposphere–lower stratosphere (UTLS) over the Tibetan Plateau
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019,https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019,https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
How robust are stratospheric age of air trends from different reanalyses?
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019,https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745, https://doi.org/10.5194/acp-22-15729-2022,https://doi.org/10.5194/acp-22-15729-2022, 2022
Short summary
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022,https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022,https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022,https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441, https://doi.org/10.5194/acp-22-10425-2022,https://doi.org/10.5194/acp-22-10425-2022, 2022
Short summary

Cited articles

Bannister, R. N., O'Neill, A., Gregory, A. R., and Nissen, K. M.: The role of the south-east Asian monsoon and other seasonal features in creating the “tape-recorder” signal in the Unified Model, Q. J. R. Meteorol. Soc., 130, 1531–1554, 2004. a
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather. Rev., 97, 163–172, 1969. a, b
Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D.: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340, https://doi.org/10.1175/2010JAS3433.1, 2010. a, b, c
Chen, P.: Isentropic cross-tropopause mass exchange in the extratropics, J. Geophys. Res., 100, 16661–16673, 1995. a
Chowdary, J. S., Harsha, H. S., Gnanaseelan, C., Srinivas, G., Parekh, A., Pillai, P., and Naidu, C. V.: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño, Clim. Dynam., 48, 2707–2727, https://doi.org/10.1007/s00382-016-3233-1, 2016. a
Download
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes. Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Altmetrics
Final-revised paper
Preprint