Articles | Volume 18, issue 3
https://doi.org/10.5194/acp-18-1593-2018
https://doi.org/10.5194/acp-18-1593-2018
Research article
 | 
05 Feb 2018
Research article |  | 05 Feb 2018

Initiation of secondary ice production in clouds

Sylvia C. Sullivan, Corinna Hoose, Alexei Kiselev, Thomas Leisner, and Athanasios Nenes

Related authors

Sensitivity of ice cloud radiative heating to optical, macro- and microphysical properties
Edgardo I. Sepulveda Araya, Sylvia C. Sullivan, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3212,https://doi.org/10.5194/egusphere-2024-3212, 2024
Short summary
Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023,https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023,https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021,https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
The impact of secondary ice production on Arctic stratocumulus
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020,https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025,https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025,https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025,https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
On the impact of thunder on cloud ice crystals and droplets
Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis
Atmos. Chem. Phys., 25, 5935–5946, https://doi.org/10.5194/acp-25-5935-2025,https://doi.org/10.5194/acp-25-5935-2025, 2025
Short summary

Cited articles

Beard, K. V.: Ice initiation in warm-base convective clouds: an assessment of microphysical mechanisms, Atmos. Res., 28, 125–152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992. a, b, c
Bogacki, P. and Shampine, L. F.: A 3(2) pair of Runge–Kutta formulas, Appl. Math. Lett., 2, 321–325, https://doi.org/10.1016/0893-9659(89)90079-7, 1989. a
Borys, D. R., Lowenthal, D. H., Cohn, S. A., and Brown, W. O. J.: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate, Geophys. Res. Lett., 30, 1538, https://doi.org/10.1029/2002GL016855, 2003. a
Cannon, T. D., Dye, J. E., and Toutenhoofd, V.: The mechanism of precipitation formation in Northeastern Colorado cumulus II. Sailplane measurements, J. Atmos. Sci., 31, 2148–2151, https://doi.org/10.1175/1520-0469(1974)031< 2152:TMOPFI> 2.0.CO;2, 1974. a
Chen, J.-P. and Lamb, D.: The theoretical basis for the parameterization of ice crystal habits: growth by vapor deposition, J. Atmos. Sci., 51, 1206–1221, https://doi.org/10.1175/1520-0469, 1994. a
Download
Short summary
Ice multiplication (IM) processes can have a profound impact on cloud and precipitation development but are poorly understood. Here we study whether a lower limit of ice nuclei exists to initiate IM. The lower limit is found to be extremely low (0.01 per liter or less). A counterintuitive but profound conclusion thus emerges: IM requires cloud formation around a thermodynamic sweet spot and is sensitive to fluctuations in cloud condensation nuclei concentration alone.
Share
Altmetrics
Final-revised paper
Preprint