Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase
altocumulus clouds poorly predicted by large-scale models? Part 1. Physical
processes, J. Geophys. Res.-Atmos., 122, 9903–9926,
https://doi.org/10.1002/2016JD026321, 2017a. a
Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase
altocumulus clouds poorly predicted by large-scale models? Part 2. Vertical
resolution sensitivity and parameterization, J. Geophys. Res.-Atmos., 122,
9927–9944, https://doi.org/10.1002/2016JD026322, 2017b. a
Bierwirth, E., Ehrlich, A., Wendisch, M., Gayet, J.-F., Gourbeyre, C., Dupuy,
R., Herber, A., Neuber, R., and Lampert, A.: Optical thickness and effective
radius of Arctic boundary-layer clouds retrieved from airborne nadir and
imaging spectrometry, Atmos. Meas. Tech., 6, 1189–1200,
https://doi.org/10.5194/amt-6-1189-2013, 2013. a, b, c
Brümmer, B.: Roll and Cell Convection in Wintertime Arctic Cold-Air
Outbreaks, J. Atmos. Sci., 56, 2613–2636,
https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2, 1999. a, b
Cahalan, R. F.: Bounded cascade clouds: albedo and effective thickness,
Nonlin. Processes Geophys., 1, 156–167,
https://doi.org/10.5194/npg-1-156-1994, 1994. a
Chylek, P. and Borel, C.: Mixed phase cloud water/ice structure from satellite data high spatial resolution, Geophys. Res. Lett., 31, L14104, https://doi.org/10.1029/2004GL020428, 2004. a
Coleman, D. M.: Evaluation of the Performance of the Dropsonde Humidity
Sensor in Clouds, SOARS, 2003. a
Costa, A., Meyer, J., Afchine, A., Luebke, A., Günther, G., Dorsey, J.
R., Gallagher, M. W., Ehrlich, A., Wendisch, M., Baumgardner, D., Wex, H.,
and Krämer, M.: Classification of Arctic, midlatitude and tropical clouds
in the mixed-phase temperature regime, Atmos. Chem. Phys., 17, 12219–12238,
https://doi.org/10.5194/acp-17-12219-2017, 2017. a
Curry, J. A., Rossow, W. B., Randall, D., and Schramm, J. L.: Overview of
Arctic cloud and radiation characteristics, J. Climate, 9, 1731–1764,
https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2, 1996. a
Davis, A., Marshak, A., Gerber, H., and Wiscombe, W.: Horizontal structure
of marine boundary layer clouds from centimeter to kilometer scales, J.
Geophys. Res., 104, 6123–6144, 1999. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Duran, D. R.: Numerical Methods for Fluid Dynamics, 2nd Edn., Springer, New
York, 2010. a
Ehrlich, A., Bierwirth, E., Istomina, L., and Wendisch, M.: Combined
retrieval of Arctic liquid water cloud and surface snow properties using
airborne spectral solar remote sensing, Atmos. Meas. Tech., 10, 3215–3230,
https://doi.org/10.5194/amt-10-3215-2017, 2017. a
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton,
T. W., Kaye, P. H., Hirst, E., and Greenaway, R.: Simultaneous radar and
aircraft observations of mixed-phase cloud at the 100 m scale, Q. J. Roy.
Meteor. Soc., 130, 1877–1904, https://doi.org/10.1256/qj.03.102, 2004. a
Herzog, H.-J., Vogel, G., and Schubert, U.: LLM – a nonhydrostatic model
applied to high-resolving simulations of turbulent fluxes over heterogeneous
terrain, Theor. Appl. Climatol., 73, 67–86,
https://doi.org/10.1007/s00704-002-0694-4, 2002. a
Hinkelmann, L. M.: Differences between along-wind and cross-wind solar
irradiance variability on small spatial scales, Sol. Energy, 88, 192–203,
https://doi.org/10.1016/j.solener.2012.11.011, 2013. a
Hock, T. F. and Franklin, J. L.: The NCAR GPS dropwindsonde, B. Am.
Meteorol. Soc., 80, 407–420,
https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2, 1999. a
Houze Jr., R. A.: Cloud Dynamics, International Geophysics series, Academic
Press, San Diego, USA, and London, UK, 53, p. 166, 1994. a
Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarty, B. J.: An annual
cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA,
J. Geophys. Res., 107, SHE 5-1–SHE 5-15, https://doi.org/10.1029/2000JC000423, 2002. a
Iwabuchi, H. and Hayasaka, T.: Effects of cloud horizontal inhomogeneity on
the optical thickness retrieved from moderate-resolution satellite data, J.
Atmos. Sci., 59, 2227–2242,
https://doi.org/10.1175/1520-0469(2002)059<2227:EOCHIO>2.0.CO;2, 2002. a
Jakobson, L., Vihma, T., Jakobson, E., Palo, T., Männik, A., and Jaagus,
J.: Low-level jet characteristics over the Arctic Ocean in spring and summer,
Atmos. Chem. Phys., 13, 11089–11099,
https://doi.org/10.5194/acp-13-11089-2013, 2013. a
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A., de
Boer, G., Chen, M., Cole, J. N. S., Del Genio, A. D., Falk, M., Foster, M.
J., Fridlind, A., Golaz, J.-C., Hashino, T., Harrington, J. Y., Hoose, C.,
Khairoutdinov, M. F., Larson, V. E., Liu, X., Luo, Y., McFarquhar, G. M.,
Menon, S., Neggers, R. A. J., Park, S., Poellot, M. R., Schmidt, J. M.,
Sednev, I., Shipway, B. J., Shupe, M. D., Spangenberg, D. A., Sud, Y. C.,
Turner, D. D., Veron, D. E., Salzen, K. v., Walker, G. K., Wang, Z., Wolf, A.
B., Xie, S., Xu, K.-M., Yang, F., and Zhang, G.: Intercomparison of model
simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic
Cloud Experiment. I: single-layer cloud, Q. J. Roy. Meteor. Soc., 135,
979–1002, https://doi.org/10.1002/qj.416, 2009. a
Klingebiel, M., de Lozar, A., Molleker, S., Weigel, R., Roth, A., Schmidt,
L., Meyer, J., Ehrlich, A., Neuber, R., Wendisch, M., and Borrmann, S.:
Arctic low-level boundary layer clouds: in situ measurements and simulations
of mono- and bimodal supercooled droplet size distributions at the top layer
of liquid phase clouds, Atmos. Chem. Phys., 15, 617–631,
https://doi.org/10.5194/acp-15-617-2015, 2015. a, b
Kopec, M. K., Malinowski, S. P., and Piotrowski, Z. P.: Effects of wind
shear and radiative cooling on the stratocumulus-topped boundary layer, Q.
J. Roy. Meteor. Soc., 142, 3222–3233, https://doi.org/10.1002/qj.2903, 2016. a
Korolev, A.: Limitations of the Wegener–Bergeron–Findeisen Mechanism in
the Evolution of Mixed-Phase Clouds, J. Atmos. Sci., 64, 3372–3375,
https://doi.org/10.1175/JAS4035.1, 2007. a
Langhans, W., Schmidli, J., and Szintai, B.: A Smagorinsky-Lilly turbulence
closure for COSMO-LES: Implementation and comparison to ARPS, COSMO
newsletter, 12, 20–31, 2012. a
Lawson, R. P., Stamnes, K., Stamnes, J., Zmarzly, P., Koskuliks, J., Roden,
C., Mo, Q., Carrithers, M., and Bland, G. L.: Deployment of
a Tethered-Balloon System for Microphysics and Radiative Measurements in
Mixed-Phase Clouds at Ny-Ålesund and South Pole, J. Atmos. Ocean. Tech.,
28, 656–670, https://doi.org/10.1175/2010JTECHA1439.1, 2010. a
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of seven
different atmospheric reanalysis products in the arctic, J. Climate, 27,
2588–2605, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014. a
Loewe, K.: Arctic mixed–phase clouds Macro- and micropysical insights with a numerical model,
KIT Scientific publishing, https://doi.org/10.5445/KSP/1000070973, 2017. a
Loewe, K., Ekman, A. M. L., Paukert, M., Sedlar, J., Tjernström, M., and
Hoose, C.: Modelling micro- and macrophysical contributors to the dissipation
of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study
(ASCOS), Atmos. Chem. Phys., 17, 6693–6704,
https://doi.org/10.5194/acp-17-6693-2017, 2017. a, b, c, d, e, f
Marchand, R. T., Ackermann, T. P., and Moroney, C.: An assessment of
Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top
heights and cloud top winds using ground-based radar, lidar, and microwave
radiometers, J. Geophys. Res., 112, D06204, https://doi.org/10.1029/2006JD007091,
2007. a
Marshak, A., Davis, A., Wiscombe, W., and Cahalan, R.: Radiative smoothing
in fractal clouds, J. Geophys. Res., 100, 26247–26261, 1995. a
McFarquhar, G. M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J. W.,
Schmid, B., Tomlinson, J. M., Wolde, M., Brooks, S. D., Cziczo, D., Dubey, M.
K., Fan, J., Flynn, C., Gultepe, I., Hubbe, J., Gilles, M. K., Laskin, A.,
Lawson, P., Leaitch, W. R., Liu, P., Liu, X., Lubin, D., Mazzoleni, C.,
Macdonald, A., Moffet, R. C., Morrison, H., Ovchinnikov, M., Shupe, M. D.,
Turner, D. D., Xie, S., Zelenyuk, A., Bae, K., Freer, M., and Glen, A.:
Indirect and Semi-direct Aerosol Campaign, B. Am. Meteorol. Soc., 92,
183–201, https://doi.org/10.1175/2010BAMS2935.1, 2011. a
Mellado, J. P.: Cloud-Top Entrainment in Stratocumulus Clouds, Annu. Rev.
Fluid Mech., 49, 145–169, https://doi.org/10.1146/annurev-fluid-010816-060231, 2017. a
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat.
Geosci., 5, 11–17, https://doi.org/10.1038/NGEO1332, 2012.
a
Oreopoulos, L. and Cahalan, R. F.: Cloud Inhomogeneity from MODIS, J.
Climate, 18, 5110–5124, 2005. a, b
Oreopoulos, L., Cahalan, R., Marshak, A., and Wen, G.: A new normalized
difference cloud retrieval technique applied to Landsat radiances over the
Oklahoma ARM site, J. Appl. Meteorol., 39, 2305–2321, 2000. a
Ovchinnikov, M., Ackerman, A. S., Avramov, A., Cheng, A., Fan, J., Fridlind,
A. M., Ghan, S., Harrington, J., Hoose, C., Korolev, A., McFarquhar, G. M.,
Morrison, H., Paukert, M., Savre, J., Shipway, B. J., Shupe, M. D., Solomon,
A., and Sulia, K.: Intercomparison of large-eddy simulations of Arctic
mixed-phase clouds: Importance of ice size distribution assumptions, J. Adv.
Model. Earth Syst., 6, 223–248, https://doi.org/10.1002/2013MS000282, 2014. a, b, c, d
Paukert, M. and Hoose, C.: Modeling immersion freezing with aerosol-dependent
prognostic ice nuclei in Arctic mixed-phase clouds, J. Geophys.
Res.-Atmos., 14, 9073–9092, https://doi.org/10.1002/2014JD021917, 2014. a
Pedersen, J. G., Malinowski, S. P., and Grabowski, W. W.: Resolution and
domain-size sensitivity in implicit large-eddy simulation of the
stratocumulus-topped boundary layer, J. Adv. Model. Earth Syst., 8,
885–903,https://doi.org/10.1002/2015MS000572, 2016. a
Ritter, B. and Geleyn, J.-F.: A Comprehensive Radiation Scheme for Numerical
Weather Prediction Models with Potential Applications in Climate Simulations,
Mon. Weather Rev., 120, 303–325,
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992. a
Roesler, E. L., Posselt, D. J., and Rood, R. B.: Using large eddy
simulations to reveal the size, strength, and phase of updraft and downdraft
cores of an Arctic mixed-phase stratocumulus cloud, J. Geophys. Res.-Atmos.,
122, 4378–4400, https://doi.org/10.1002/2016JD026055, 2016. a
Rossow, W. B. and Schiffer, R. A.: ISCCP cloud data products, B. Am.
Meteorol. Soc., 72, 2–20, 1991. a
Schäfer, M., Bierwirth, E., Ehrlich, A., Heyner, F., and Wendisch, M.:
Retrieval of cirrus optical thickness and assessment of ice crystal shape
from ground-based imaging spectrometry, Atmos. Meas. Tech., 6, 1855–1868,
https://doi.org/10.5194/amt-6-1855-2013, 2013. a
Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., and Wendisch, M.:
Airborne observations and simulations of three-dimensional radiative
interactions between Arctic boundary layer clouds and ice floes, Atmos. Chem.
Phys., 15, 8147–8163, https://doi.org/10.5194/acp-15-8147-2015, 2015. a, b, c, d, e
Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and
Wendisch, M.: Directional, horizontal inhomogeneities of cloud optical
thickness fields retrieved from ground-based and airbornespectral imaging,
Atmos. Chem. Phys., 17, 2359–2372, https://doi.org/10.5194/acp-17-2359-2017,
2017a. a, b, c, d, e, f, g, h, i, j, k, l, m
Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and
Wendisch, M.: Cloud optical thickness retrieved from horizontal fields of
reflected solar spectral radiance measured with AisaEAGLE during VERDI
campaign 2012, PANGAEA, https://doi.org/10.1594/PANGAEA.874798, 2017b. a, b, c
Schättler, U., Doms, G., and Schraff, C.: A description of the
non-hydrostatic regional COSMO-model, part VII: user's guide, available
at: http://www.cosmo-model.org (last access: 11 September 2018), 2015. a
Schröder, M.: Multiple scattering and absorption of solar radiation in
the presence of three-dimensional cloud fields, PhD thesis, Fachbereich
Geowissenschaften der Freien Universität Berlin, 2004. a
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds. Part 1: Model description,
Meteorol. Atmos. Phys., 92, 45–66, https://doi.org/10.1007/s00703-005-0112-4, 2006. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shiobara, M., Masanori, Y., and Kobayashi, H.: A polar cloud analysis based
on Micro-pulse Lidar measurements at Ny-Alesund, Svalbard and Syowa,
Antarctica, Phys. Chem. Earth, 28, 1205–1212,
https://doi.org/10.1016/j.pce.2003.08.057, 2003. a
Shupe, M. D. and Intrieri, J. M.: Cloud radiative forcing of the Arctic
surface: The influence of cloud properties, surface albedo, and solar zenith
angle, J. Climate, 17, 616–628, 2004. a
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA, J. Atmos. Sci., 63, 697–711, https://doi.org/10.1175/JAS3659.1, 2006. a
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.:
Vertical Motions in Arctic Mixed-Phase Stratiform Clouds, J. Atmos. Sci.,
65, 1304–1321, https://doi.org/10.1175/2007JAS2479.1, 2008. a
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R.,
Starkweather, S. M., and Shiobara, M.: Clouds at Arctic Atmospheric
Observatories. Part I: Occurrence and Macrophysical Properties, J. Appl.
Meteorol. Clim., 50, 626–644, https://doi.org/10.1175/2010JAMC2467.1, 2011. a, b, c
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy
Spectra, Mon. Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1, 2004. a, b
Stevens, R. G., Loewe, K., Dearden, C., Dimitrelos, A., Possner, A., Eirund,
G. K., Raatikainen, T., Hill, A. A., Shipway, B. J., Wilkinson, J.,
Romakkaniemi, S., Tonttila, J., Laaksonen, A., Korhonen, H., Connolly, P.,
Lohmann, U., Hoose, C., Ekman, A. M. L., Carslaw, K. S., and Field, P. R.: A
model intercomparison of CCN-limited tenuous clouds in the high Arctic,
Atmos. Chem. Phys., 18, 11041–11071,
https://doi.org/10.5194/acp-18-11041-2018, 2018. a
Szczap, F., Isaka, H., Saute, M., and Guillemet, B.: Effective radiative
properties of bounded cascade nonabsorbing clouds: Definition of the
equivalent homogeneous cloud approximation, J. Geophys. Res., 105,
20617–20633, 2000. a, b
Varnai, T. and Marshak, A.: Observations of Three-Dimensional Radiative
Effects that Influence MODIS Cloud Optical Thickness Retrievals, J. Atmos.
Sci., 59, 1607–1618, 2001. a
Vavrus, S.: The Impact of Cloud Feedbacks on Arctic Climate under Greenhouse
Forcing, J. Climate, 17, 603–615,
https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2, 2004. a
Vochezer, P., Järvinen, E., Wagner, R., Kupiszewski, P., Leisner, T., and
Schnaiter, M.: In situ characterization of mixed phase clouds using the Small
Ice Detector and the Particle Phase Discriminator, Atmos. Meas. Tech., 9,
159–177, https://doi.org/10.5194/amt-9-159-2016, 2016. a
Wendisch, M., Yang, P., and Ehrlich, A.: Amplified climate changes in the
Arctic: Role of clouds and atmospheric radiation, 132, 1–34,
Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch-Naturwissenschaftliche Klasse, S. Hirzel Verlag,
Stuttgart/Leipzig, 2013.
a
Wendisch, M., Brückner, M., Burrows, J. P., Crewell, S., Dethloff, K.,
Ebell, K., Lüpkes, Ch., Macke, A., Notholt, J., Quaas, J., Rinke, A., and
Tegen, I.: Understanding causes and effects of rapid warming in the Arctic,
EOS, 98, 22–26, https://doi.org/10.1029/2017EO064803, 2017. a