Articles | Volume 18, issue 17
https://doi.org/10.5194/acp-18-13115-2018
https://doi.org/10.5194/acp-18-13115-2018
Research article
 | 
12 Sep 2018
Research article |  | 12 Sep 2018

Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus

Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch

Related authors

Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds
Hanno Müller, André Ehrlich, Evelyn Jäkel, Johannes Röttenbacher, Benjamin Kirbus, Michael Schäfer, Robin J. Hogan, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-2443,https://doi.org/10.5194/egusphere-2023-2443, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Effects of variable ice–ocean surface properties and air mass transformation on the Arctic radiative energy budget
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023,https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023,https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
Sebastian Becker, André Ehrlich, Michael Schäfer, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7015–7031, https://doi.org/10.5194/acp-23-7015-2023,https://doi.org/10.5194/acp-23-7015-2023, 2023
Short summary
Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-848,https://doi.org/10.5194/acp-2022-848, 2023
Revised manuscript accepted for ACP
Short summary

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimation of 1 km downwelling shortwave radiation over the Tibetan Plateau under all-sky conditions
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023,https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022,https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022,https://doi.org/10.5194/acp-22-9313-2022, 2022
Short summary
Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic
Yinghui Liu
Atmos. Chem. Phys., 22, 8151–8173, https://doi.org/10.5194/acp-22-8151-2022,https://doi.org/10.5194/acp-22-8151-2022, 2022
Short summary
Longwave radiative effect of the cloud–aerosol transition zone based on CERES observations
Babak Jahani, Hendrik Andersen, Josep Calbó, Josep-Abel González, and Jan Cermak
Atmos. Chem. Phys., 22, 1483–1494, https://doi.org/10.5194/acp-22-1483-2022,https://doi.org/10.5194/acp-22-1483-2022, 2022
Short summary

Cited articles

Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase altocumulus clouds poorly predicted by large-scale models? Part 1. Physical processes, J. Geophys. Res.-Atmos., 122, 9903–9926, https://doi.org/10.1002/2016JD026321, 2017a. a
Barrett, A. I., Hogan, R. J., and Forbes, R. M.: Why are mixed-phase altocumulus clouds poorly predicted by large-scale models? Part 2. Vertical resolution sensitivity and parameterization, J. Geophys. Res.-Atmos., 122, 9927–9944, https://doi.org/10.1002/2016JD026322, 2017b. a
Bierwirth, E., Ehrlich, A., Wendisch, M., Gayet, J.-F., Gourbeyre, C., Dupuy, R., Herber, A., Neuber, R., and Lampert, A.: Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry, Atmos. Meas. Tech., 6, 1189–1200, https://doi.org/10.5194/amt-6-1189-2013, 2013. a, b, c
Brümmer, B.: Roll and Cell Convection in Wintertime Arctic Cold-Air Outbreaks, J. Atmos. Sci., 56, 2613–2636, https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2, 1999. a, b
Cahalan, R. F.: Bounded cascade clouds: albedo and effective thickness, Nonlin. Processes Geophys., 1, 156–167, https://doi.org/10.5194/npg-1-156-1994, 1994. a
Download
Short summary
Airborne observed horizontal fields of cloud optical thickness are compared with semi-idealized large eddy simulations of Arctic stratus. The comparison focuses on horizontal cloud inhomogeneities and directional features of the small-scale cloud structures. Using inhomogeneity parameters and autocorrelation analysis it is investigated, if the observed small-scale cloud inhomogeneities can be represented by the model. Forcings for cloud inhomogeneities are investigated in a sensitivity study.
Altmetrics
Final-revised paper
Preprint