Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
  • CiteScore value: 9.7 CiteScore
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 14, issue 16
Atmos. Chem. Phys., 14, 8749–8761, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 8749–8761, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Aug 2014

Research article | 26 Aug 2014

Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

M. M. Wonsick, R. T. Pinker, and Y. Ma M. M. Wonsick et al.
  • Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA

Abstract. The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol–monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000–2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized behavior.

Publications Copernicus