Articles | Volume 17, issue 11
Research article
08 Jun 2017
Research article |  | 08 Jun 2017

The relationship between lower-stratospheric ozone at southern high latitudes and sea surface temperature in the East Asian marginal seas in austral spring

Wenshou Tian, Yuanpu Li, Fei Xie, Jiankai Zhang, Martyn P. Chipperfield, Wuhu Feng, Yongyun Hu, Sen Zhao, Xin Zhou, Yun Yang, and Xuan Ma

Related authors

Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411,,, 2022
Short summary
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600,,, 2022
Short summary
Estimation of isentropic stirring and mixing and their diagnosis for the stratospheric polar vortex
Zhiting Wang, Nils Hase, Wenshou Tian, and Mengchu Tao
Atmos. Chem. Phys. Discuss.,,, 2022
Publication in ACP not foreseen
Short summary
Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States
Xuan Ma, Fei Xie, Jianping Li, Xinlong Zheng, Wenshou Tian, Ruiqiang Ding, Cheng Sun, and Jiankai Zhang
Atmos. Chem. Phys., 19, 861–875,,, 2019
Space–time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530,,, 2018
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278,,, 2023
Short summary
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745,,, 2022
Short summary
The Holton-Tan mechanism under stratospheric aerosol intervention
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys. Discuss.,,, 2022
Revised manuscript accepted for ACP
Short summary
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934,,, 2022
Short summary
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339,,, 2022
Short summary

Cited articles

Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic press, New York, 489 pp., 1987.
Angell, J. K.: Relation of Antarctic 100 mb temperature and total ozone to equatorial QBO, equatorial SST, and sunspot number, 1958–87, Geophys. Res. Lett., 15, 915–918, 1988.
Angell, J. K.: Influence of equatorial QBO and SST on polar total ozone, and the 1990 Antarctic Ozone Hole, Geophys. Res. Lett., 17, 1569–1572, 1990.
Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314,, 2006.
Short summary
Although the principal mechanisms responsible for the formation of the Antarctic ozone hole are well understood, the factors or processes that generate interannual variations in ozone levels in the southern high-latitude stratosphere remain under debate. This study finds that the SST variations across the East Asian marginal seas (5° S–35° N, 100–140° E) could modulate the southern high-latitude stratospheric ozone interannual changes.
Final-revised paper