Articles | Volume 17, issue 20
Atmos. Chem. Phys., 17, 12495–12508, 2017
https://doi.org/10.5194/acp-17-12495-2017
Atmos. Chem. Phys., 17, 12495–12508, 2017
https://doi.org/10.5194/acp-17-12495-2017

Research article 23 Oct 2017

Research article | 23 Oct 2017

In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation

Florian Berkes et al.

Related authors

Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020,https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
The IAGOS NOx instrument – design, operation and first results from deployment aboard passenger aircraft
Florian Berkes, Norbert Houben, Ulrich Bundke, Harald Franke, Hans-Werner Pätz, Franz Rohrer, Andreas Wahner, and Andreas Petzold
Atmos. Meas. Tech., 11, 3737–3757, https://doi.org/10.5194/amt-11-3737-2018,https://doi.org/10.5194/amt-11-3737-2018, 2018
Short summary
Airborne observation of mixing across the entrainment zone during PARADE 2011
Florian Berkes, Peter Hoor, Heiko Bozem, Daniel Kunkel, Michael Sprenger, and Stephan Henne
Atmos. Chem. Phys., 16, 6011–6025, https://doi.org/10.5194/acp-16-6011-2016,https://doi.org/10.5194/acp-16-6011-2016, 2016
Short summary
Chemical and meteorological influences on the lifetime of NO3 at a semi-rural mountain site during PARADE
N. Sobanski, M. J. Tang, J. Thieser, G. Schuster, D. Pöhler, H. Fischer, W. Song, C. Sauvage, J. Williams, J. Fachinger, F. Berkes, P. Hoor, U. Platt, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 16, 4867–4883, https://doi.org/10.5194/acp-16-4867-2016,https://doi.org/10.5194/acp-16-4867-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent and boundary layer characteristics during VOCALS-REx
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021,https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
The dynamic-thermal structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1123,https://doi.org/10.5194/acp-2020-1123, 2020
Revised manuscript accepted for ACP
Short summary
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020,https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020,https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary

Cited articles

Ballish, B. A. and Kumar, V. K.: Systematic differences in aircraft and radiosonde temperatures, B. Am. Meteorol. Soc., 89, 1689–1707, https://doi.org/10.1175/2008BAMS2332.1, 2008.
Bencherif, H., Diab, R. D., Portafaix, T., Morel, B., Keckhut, P., and Moorgawa, A.: Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa, Atmos. Chem. Phys., 6, 5121–5128, https://doi.org/10.5194/acp-6-5121-2006, 2006.
Blunden, J. and Arndt, D. S. (Eds.): State of the Climate in 2013, B. Am. Meteorol. Soc., 95, S1–S279, https://doi.org/10.1175/2014BAMSStateoftheClimate.1, 2014.
Boothe, A. C. and Homeyer, C. R.: Global large-scale stratosphere–troposphere exchange in modern reanalyses, Atmos. Chem. Phys., 17, 5537–5559, https://doi.org/10.5194/acp-17-5537-2017, 2017.
Bortz, S. E., Prather, M. J., Cammas, J.-P., Thouret, V., and Smit, H.: Ozone, water vapor, and temperature in the upper tropical troposphere: variations over a decade of MOZAIC measurements, J. Geophys. Res., 111, D05305, https://doi.org/10.1029/2005JD006512, 2006.
Download
Short summary
This study highlights the importance of independent global measurements with high and long-term accuracy to quantify long-term changes, especially in the UTLS region, and to help identify inconsistencies between different data sets of observations and models. Here we investigated temperature trends over different regions within a climate-sensitive area of the atmosphere and demonstrated the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses.
Altmetrics
Final-revised paper
Preprint