Articles | Volume 13, issue 24
Research article
18 Dec 2013
Research article |  | 18 Dec 2013

Climatology of pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009

R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec

Abstract. The objective of this paper is to deliver the most accurate ozone (O3) and carbon monoxide (CO) climatology for the pure troposphere only, i.e. exclusively from the ground to the dynamical tropopause on an individual profile basis. The results (profiles and columns) are derived solely from the Measurements of OZone and water vapour by in-service Alrbus airCraft programme (MOZAIC) over 15 years (1994–2009). The study, focused on the northern mid-latitudes [24–50° N] and [119° W–140° E], includes more than 40 000 profiles over 11 sites to give a quasi-global zonal picture. Considering all the sites, the pure tropospheric column peak-to-peak seasonal cycle ranges are 23.7–43.2 DU for O3 and 1.7–6.9 × 10 18 molecules cm−2 for CO. The maxima of the seasonal cycles are not in phase, occurring in February–April for CO and May–July for O3. The phase shift is related to the photochemistry and OH removal efficiencies. The purely tropospheric seasonal profiles are characterized by a typical autumn–winter/spring–summer O3 dichotomy (except in Los Angeles, Eastmed – a cluster of Cairo and Tel Aviv – and the regions impacted by the summer monsoon) and a summer–autumn/winter–spring CO dichotomy. We revisit the boundary-layer, mid-tropospheric (MT) and upper-tropospheric (UT) partial columns using a~new monthly varying MT ceiling. Interestingly, the seasonal cycle maximum of the UT partial columns is shifted from summer to spring for O3 and to very early spring for CO. Conversely, the MT maximum is shifted from spring to summer and is associated with a summer (winter) MT thickening (thinning). Lastly, the pure tropospheric seasonal cycles derived from our analysis are consistent with the cycles derived from spaceborne measurements, the correlation coefficients being r=0.6–0.9 for O3 and r>0.9 for CO. The cycles observed from space are nevertheless greater than MOZAIC for O3 (by 9–18 DU) and smaller for CO (up to 1 × 10 18 molecules cm−2). The larger winter O3 difference between the two data sets suggests probable stratospheric contamination in satellite data due to the tropopause position. The study underlines the importance of rigorously discriminating between the stratospheric and tropospheric reservoirs and avoiding use of a~monthly averaged tropopause position without this strict discrimination in order to assess the pure O3 and CO tropospheric trends.

Final-revised paper