Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17077–17086, 2018
https://doi.org/10.5194/acp-18-17077-2018
Atmos. Chem. Phys., 18, 17077–17086, 2018
https://doi.org/10.5194/acp-18-17077-2018

Research article 04 Dec 2018

Research article | 04 Dec 2018

Molecular dynamics simulation of the surface tension of aqueous sodium chloride: from dilute to highly supersaturated solutions and molten salt

Xiaoxiang Wang et al.

Related authors

Energetic analysis of succinic acid in water droplets: insight into the size-dependent solubility of atmospheric nanoparticles
Chuchu Chen, Xiaoxiang Wang, Kurt Binder, Mohammad Mehdi Ghahremanpour, David van der Spoel, Ulrich Pöschl, Hang Su, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1329,https://doi.org/10.5194/acp-2020-1329, 2021
Preprint under review for ACP
Short summary
Light-induced protein nitration and degradation with HONO emission
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017,https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity
Hang Su, Yafang Cheng, Nan Ma, Zhibin Wang, Xiaoxiang Wang, Mira L. Pöhlker, Björn Nillius, Alfred Wiedensohler, and Ulrich Pöschl
Atmos. Meas. Tech., 9, 5183–5192, https://doi.org/10.5194/amt-9-5183-2016,https://doi.org/10.5194/amt-9-5183-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
Kalle Nordling, Hannele Korhonen, Jouni Räisänen, Antti-Ilari Partanen, Bjørn H. Samset, and Joonas Merikanto
Atmos. Chem. Phys., 21, 14941–14958, https://doi.org/10.5194/acp-21-14941-2021,https://doi.org/10.5194/acp-21-14941-2021, 2021
Short summary
Surface deposition of marine fog and its treatment in the Weather Research and Forecasting (WRF) model
Peter A. Taylor, Zheqi Chen, Li Cheng, Soudeh Afsharian, Wensong Weng, George A. Isaac, Terry W. Bullock, and Yongsheng Chen
Atmos. Chem. Phys., 21, 14687–14702, https://doi.org/10.5194/acp-21-14687-2021,https://doi.org/10.5194/acp-21-14687-2021, 2021
Short summary
Assessing the potential efficacy of marine cloud brightening for cooling Earth using a simple heuristic model
Robert Wood
Atmos. Chem. Phys., 21, 14507–14533, https://doi.org/10.5194/acp-21-14507-2021,https://doi.org/10.5194/acp-21-14507-2021, 2021
Short summary
Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model
Mengyu Sun, Dongxia Liu, Xiushu Qie, Edward R. Mansell, Yoav Yair, Alexandre O. Fierro, Shanfeng Yuan, Zhixiong Chen, and Dongfang Wang
Atmos. Chem. Phys., 21, 14141–14158, https://doi.org/10.5194/acp-21-14141-2021,https://doi.org/10.5194/acp-21-14141-2021, 2021
Short summary
The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021,https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary

Cited articles

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX., 1, 19–25, 2015. 
Alejandre, J., Tildesley, D. J., and Chapela, G. A.: Molecular dynamics simulation of the orthobaric densities and surface tension of water, J. Chem. Phys., 102, 4574–4583, 1995. 
Aveyard, R. and Saleem, S. M.: Interfacial tensions at alkane-aqueous electrolyte interfaces, J. Am. Chem. Soc., 72, 1609–1617, 1976. 
Bahadur, R., Russell, L. M., and Alavi, S.: Surface tensions in NaCl-water-air systems from MD simulations, J. Phys. Chem. B, 111, 11989–11996, 2007. 
Berendsen, H., Grigera, J., and Straatsma, T.: The missing term in effective pair potentials, J. Phys. Chem., 91, 6269–6271, 1987. 
Download
Short summary
The surface tension of aqueous NaCl (σ) is investigated by molecular dynamics simulations from dilute to highly supersaturated solutions. The linear approximation of concentration dependence of σ at molality scale can be extended to the supersaturated NaCl solution until the solute mass fraction (xNaCl) of ~0.39. After that, the σ remains almost unchanged until an xNaCl of ~0.47. Then the σ gradually regains the growing momentum with a tendency to approach the surface tension of molten NaCl.
Altmetrics
Final-revised paper
Preprint