Articles | Volume 16, issue 18
https://doi.org/10.5194/acp-16-11773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-11773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Isotopic composition for source identification of mercury in atmospheric fine particles
Qiang Huang
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Weilin Huang
Department of Environmental Sciences, Rutgers, The State University of
New Jersey, New Brunswick, NJ 08901, USA
Pingqing Fu
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing 100029, China
Benjamin Guinot
Laboratoire d'Aérologie UMR5560 CNRS-Université Toulouse 3,
Toulouse, France
Xinbin Feng
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Lihai Shang
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Zhuhong Wang
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Zhongwei Wang
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Shengliu Yuan
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Hongming Cai
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Lianfang Wei
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing 100029, China
Ben Yu
SKLEG, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang
550081, China
Related authors
Qiang Huang, Jiubin Chen, Weilin Huang, John R. Reinfelder, Pingqing Fu, Shengliu Yuan, Zhongwei Wang, Wei Yuan, Hongming Cai, Hong Ren, Yele Sun, and Li He
Atmos. Chem. Phys., 19, 315–325, https://doi.org/10.5194/acp-19-315-2019, https://doi.org/10.5194/acp-19-315-2019, 2019
Short summary
Short summary
Although the specific reactions and mechanisms in fine aerosols could not be explicitly determined from this field study, our results provide isotopic evidence that local daily photochemical reduction of divalent Hg is of critical importance to the fate of PM2.5-Hg in urban atmospheres and that, in addition to variation in sources, photochemical reduction appears to be an important process that affects both the particle mass-specific abundance and isotopic composition of PM2.5-Hg.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2293, https://doi.org/10.5194/egusphere-2024-2293, 2024
Short summary
Short summary
Dust soluble iron deposition from East Asia plays an important role in the marine ecology of the Northwest Pacific. Using the developed model, our findings highlight a dual trend: a decrease in the overall deposition of soluble iron from dust, but an increase in the solubility of the iron itself due to the enhanced atmospheric processing. It underscores the critical roles of both dust emission and atmospheric processing in soluble iron deposition and marine ecology.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1432, https://doi.org/10.5194/egusphere-2024-1432, 2024
Short summary
Short summary
Inadequate consideration of mixing state and coatings on BC hinders aerosol radiation forcing quantification. While core-shell mixing results match observations closely, partial internal mixing and coating are more realistic. The fraction of embedded BC and coating aerosols resolved by a microphysics module were used to constrain the mixing state. This led to a 30~43 % absorption enhancement decrease over Northern China, offering valuable insights for the assessment of BC's radiative effects.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1880, https://doi.org/10.5194/egusphere-2024-1880, 2024
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolite and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Lehui Cui, Yunting Xiao, Wei Hu, Lei Song, Yujue Wang, Chao Zhang, Pingqing Fu, and Jialei Zhu
Earth Syst. Sci. Data, 15, 5403–5425, https://doi.org/10.5194/essd-15-5403-2023, https://doi.org/10.5194/essd-15-5403-2023, 2023
Short summary
Short summary
Isoprene is a crucial non-methane biogenic volatile organic compound with the largest global emissions, which has high chemical reactivity and serves as the primary source of natural secondary organic aerosols. This study built a module to present a 20-year global hourly dataset of marine phytoplankton-generated biological and photochemistry-generated isoprene emissions in the sea microlayers based on the latest advancements in biological, physical, and chemical processes.
Jingjing Meng, Yachen Wang, Yuanyuan Li, Tonglin Huang, Zhifei Wang, Yiqiu Wang, Min Chen, Zhanfang Hou, Houhua Zhou, Keding Lu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 14481–14503, https://doi.org/10.5194/acp-23-14481-2023, https://doi.org/10.5194/acp-23-14481-2023, 2023
Short summary
Short summary
This study investigated the effect of COVID-19 lockdown (LCD) measures on the formation and evolutionary process of diacids and related compounds from field observations. Results demonstrate that more aged organic aerosols are observed during the LCD due to the enhanced photochemical oxidation. Our study also found that the reactivity of 13C was higher than that of 12C in the gaseous photochemical oxidation, leading to higher δ13C values of C2 during the LCD than before the LCD.
Li Wu, Hyo-Jin Eom, Hanjin Yoo, Dhrubajyoti Gupta, Hye-Rin Cho, Pingqing Fu, and Chul-Un Ro
Atmos. Chem. Phys., 23, 12571–12588, https://doi.org/10.5194/acp-23-12571-2023, https://doi.org/10.5194/acp-23-12571-2023, 2023
Short summary
Short summary
Hygroscopicity of ambient marine aerosols is of critical relevance to investigate their atmospheric impacts, which, however, remain uncertain due to their complex compositions and mixing states. Therefore, a study on the hygroscopic behavior of ambient marine aerosols for understanding the phase states when interacting with water vapor at different RH levels and their subsequent impacts on the heterogeneous chemical reactions, atmospheric environment, and human health is of vital importance.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Zhichao Dong, Chandra Mouli Pavuluri, Zhanjie Xu, Yu Wang, Peisen Li, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 23, 2119–2143, https://doi.org/10.5194/acp-23-2119-2023, https://doi.org/10.5194/acp-23-2119-2023, 2023
Short summary
Short summary
This study has provided comprehensive baseline data of carbonaceous and inorganic aerosols as well as their isotope ratios in the Tianjin region, North China, found that Tianjin aerosols were derived from coal combustion, biomass burning and photochemical reactions of VOCs, and also implied that the Tianjin aerosols were more aged during long-range atmospheric transport in summer via carbonaceous and isotope data analysis.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022, https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in the cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day–night differences.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021, https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Short summary
This study presents vertical profiles of biogenic and anthropogenic secondary organic aerosols (SOAs) in the urban boundary layer based on a 325 m tower in Beijing in late summer. The increases in the isoprene and toluene SOAs with height were found to be more related to regional transport, whereas the decrease in those from monoterpenes and sesquiterpene were more subject to local emissions. Such complicated vertical distributions of SOA should be considered in future modeling work.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021, https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Short summary
We studied aerosol samples collected in autumn 2007 with day and night intervals in a rural site of Mangshan, north of Beijing, for sugar compounds (SCs) that are abundant organic aerosol components and can influence the air quality and climate. We found higher concentrations of biomass burning (BB) products at nighttime than daytime, whereas pollen tracers and other SCs showed an opposite diurnal trend, because this site is meteorologically characterized by a mountain/valley breeze.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Junjun Deng, Hao Guo, Hongliang Zhang, Jialei Zhu, Xin Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020, https://doi.org/10.5194/acp-20-14419-2020, 2020
Short summary
Short summary
One-year source apportionment of BC aerosols in a coastal city in China was conducted with the light-absorption observation-based method and source-oriented model. Source contributions identified by the two source apportionment methods were compared. Temporal variability, potential sources and transport pathways of BC from fossil fuel and biomass burning were characterized. Significant influence of biomass burning in North and East–Central China on BC in the region was highlighted.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Jiawei Li, Zhiwei Han, Pingqing Fu, and Xiaohong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1016, https://doi.org/10.5194/acp-2020-1016, 2020
Revised manuscript not accepted
Short summary
Short summary
Organic aerosols of marine origin are so far poorly understood. An on-line coupled regional chemistry-climate model is developed to firstly explore and characterize the seasonality and annual feature of emission, distribution and radiative effects of marine organic aerosols specifically for the western Pacific over East Asia. This study reveals an important role of marine organic aerosols in radiation and cloud and would be valuable for climate research at both regional and global scales.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Weiqi Xu, Yao He, Yanmei Qiu, Chun Chen, Conghui Xie, Lu Lei, Zhijie Li, Jiaxing Sun, Junyao Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, https://doi.org/10.5194/amt-13-3205-2020, 2020
Short summary
Short summary
We characterized mass spectral features of organic aerosol (OA) and water-soluble OA (WSOA) from 21 cooking, crop straw, wood, and coal burning experiments using aerosol mass spectrometers with standard and capture vaporizers, and we demonstrated the applications of source spectral profiles in improving source apportionment of ambient OA at a highly polluted rural site in the North China Plain in winter.
Jing Yang, Wanyu Zhao, Lianfang Wei, Qiang Zhang, Yue Zhao, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 20, 6841–6860, https://doi.org/10.5194/acp-20-6841-2020, https://doi.org/10.5194/acp-20-6841-2020, 2020
Short summary
Short summary
Our observations provide novel detailed information on the atmospheric abundances and spatial distributions of dicarboxylic acids, oxoacids, and α-dicarbonyls in marine aerosols collected from the South China Sea to the East Indian Ocean. Our results demonstrate that the continental outflow of both biogenic and anthropogenic precursors followed by photochemical aging is one of the main sources and formation processes of marine organic aerosols over the tropical oceanic regions.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Hang Liu, Xiaole Pan, Dantong Liu, Xiaoyong Liu, Xueshun Chen, Yu Tian, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020, https://doi.org/10.5194/acp-20-5771-2020, 2020
Short summary
Short summary
The bare black carbon (BC) was in a fractal structure. With coating thickness increasing, BC changed from a fractal structure to a core–shell structure. In the ambient atmosphere, plenty of BC particles were not in a perfect core–shell structure. This study brought attention to the combined effects of morphology and coating thickness on the absorption enhancement of BC-containing particles, which is helpful for determining the climatic effects of BC.
Aka Jacques Adon, Catherine Liousse, Elhadji Thierno Doumbia, Armelle Baeza-Squiban, Hélène Cachier, Jean-Francois Léon, Véronique Yoboué, Aristique Barthel Akpo, Corinne Galy-Lacaux, Benjamin Guinot, Cyril Zouiten, Hongmei Xu, Eric Gardrat, and Sekou Keita
Atmos. Chem. Phys., 20, 5327–5354, https://doi.org/10.5194/acp-20-5327-2020, https://doi.org/10.5194/acp-20-5327-2020, 2020
Short summary
Short summary
It is our responsibility to establish a link between emissions, air pollution, and health impacts for urban combustion sources, typical of Africa.
Our results show that the particulate concentrations observed at all sites far exceed the recommendations of WHO. The site influenced by domestic fires is the most polluted site, dominated by a significant fraction of ultrafine particles. These studies will eventually lead to the implementation of emission reduction solutions to improve air quality.
Fanhao Meng, Min Qin, Ke Tang, Jun Duan, Wu Fang, Shuaixi Liang, Kaidi Ye, Pinhua Xie, Yele Sun, Conghui Xie, Chunxiang Ye, Pingqing Fu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020, https://doi.org/10.5194/acp-20-5071-2020, 2020
Short summary
Short summary
Nitrous acid (HONO), a major precursor of the OH radical, plays a key role in atmospheric chemistry, but its sources are still debated. The first high-resolution vertical measurements of HONO and NO2 were conducted in Beijing to investigate the nocturnal sources of HONO at different stages of pollution. The ground surface dominated HONO production by heterogeneous conversion of NO2 during clean episodes, but the aerosol production was an important nighttime HONO source during haze episodes.
Chenjie Yu, Dantong Liu, Kurtis Broda, Rutambhara Joshi, Jason Olfert, Yele Sun, Pingqing Fu, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, https://doi.org/10.5194/acp-20-3645-2020, 2020
Short summary
Short summary
This study presents the first atmospheric application of a new morphology-independent measurement for the quantification of the mixing state of rBC-containing particles in urban Beijing as part of the UK–China APHH campaign. An inversion method has been applied for better quantification of rBC mixing state. The mass-resolved rBC mixing state information presented here has implications for detailed models of BC, its optical properties and its atmospheric life cycle.
Shaofeng Xu, Lujie Ren, Yunchao Lang, Shengjie Hou, Hong Ren, Lianfang Wei, Libin Wu, Junjun Deng, Wei Hu, Xiaole Pan, Yele Sun, Zifa Wang, Hang Su, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 20, 3623–3644, https://doi.org/10.5194/acp-20-3623-2020, https://doi.org/10.5194/acp-20-3623-2020, 2020
Short summary
Short summary
Current knowledge on the size distribution of biogenic primary organic aerosols in urban regions with heavy haze pollution is very limited. Here we performed a year-round study focusing on the organic molecular composition of size-segregated aerosol samples collected in urban Beijing during haze and non-haze days to elucidate the seasonal contributions of biomass burning, fungal spores, and plant debris to organic carbon as well as the influences from local emissions and long-range transport.
Leigh R. Crilley, Ajit Singh, Louisa J. Kramer, Marvin D. Shaw, Mohammed S. Alam, Joshua S. Apte, William J. Bloss, Lea Hildebrandt Ruiz, Pingqing Fu, Weiqi Fu, Shahzad Gani, Michael Gatari, Evgenia Ilyinskaya, Alastair C. Lewis, David Ng'ang'a, Yele Sun, Rachel C. W. Whitty, Siyao Yue, Stuart Young, and Francis D. Pope
Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, https://doi.org/10.5194/amt-13-1181-2020, 2020
Short summary
Short summary
There is considerable interest in using low-cost optical particle counters (OPCs) for particle mass measurements; however, there is no agreed upon method with respect to calibration. Here we exploit a number of datasets globally to demonstrate that particle composition and relative humidity are the key factors affecting measured concentrations from a low-cost OPC, and we present a simple correction methodology that corrects for this influence.
Lu Lei, Conghui Xie, Dawei Wang, Yao He, Qingqing Wang, Wei Zhou, Wei Hu, Pingqing Fu, Yong Chen, Xiaole Pan, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 20, 2877–2890, https://doi.org/10.5194/acp-20-2877-2020, https://doi.org/10.5194/acp-20-2877-2020, 2020
Short summary
Short summary
We characterized aerosol composition and sources near two steel plants in a coastal region in fall and spring seasons. Our results showed substantially different aerosol composition and sources between the two seasons. We observed significant impacts of steel plant emissions on aerosol chemistry nearby, and we found that aerosol particles emitted from the steel plants were dominated by ammonium sulfate/bisulfate; NOx/CO and NOx/SO2 were distinct from those in the absence of industrial plumes.
Yanbing Fan, Cong-Qiang Liu, Linjie Li, Lujie Ren, Hong Ren, Zhimin Zhang, Qinkai Li, Shuang Wang, Wei Hu, Junjun Deng, Libin Wu, Shujun Zhong, Yue Zhao, Chandra Mouli Pavuluri, Xiaodong Li, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, Zongbo Shi, and Pingqing Fu
Atmos. Chem. Phys., 20, 117–137, https://doi.org/10.5194/acp-20-117-2020, https://doi.org/10.5194/acp-20-117-2020, 2020
Short summary
Short summary
This study provides useful knowledge on the abundance, sources, and formation processes of organic aerosols in the coastal megacity of Tianjin, North China, based on the investigation of the molecular composition, diurnal variation, and winter/summer differences under the influence of land/sea breezes and the Asian summer monsoon.
Hang Liu, Xiaole Pan, Yu Wu, Dawei Wang, Yu Tian, Xiaoyong Liu, Lu Lei, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 14791–14804, https://doi.org/10.5194/acp-19-14791-2019, https://doi.org/10.5194/acp-19-14791-2019, 2019
Short summary
Short summary
The relationship among the effective density, rBC's coating thickness, and rBC's morphology was investigated. rBC with larger effective density adopted a more regular shape due to more coating thickness. The effective density distribution of ambient rBC was also measured. From the information of effective density, the ambient rBC mainly adopts an irregular shape, which can cause large uncertainties in the rBC's optical properties.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Huiyun Du, Jie Li, Xueshun Chen, Zifa Wang, Yele Sun, Pingqing Fu, Jianjun Li, Jian Gao, and Ying Wei
Atmos. Chem. Phys., 19, 9351–9370, https://doi.org/10.5194/acp-19-9351-2019, https://doi.org/10.5194/acp-19-9351-2019, 2019
Short summary
Short summary
Regional transport and heterogeneous reactions play crucial roles in haze formation. Using a chemical transport model, we found that chemical transformation of SO2 along the transport pathway from source regions to Beijing was the major source of sulfate. Heterogeneous chemistry had a stronger effect under high humidity and high pollution levels. Aerosols underwent aging during transport which altered the aerosol size and the degree of aging.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Junfeng Wang, Dantong Liu, Xinlei Ge, Yangzhou Wu, Fuzhen Shen, Mindong Chen, Jian Zhao, Conghui Xie, Qingqing Wang, Weiqi Xu, Jie Zhang, Jianlin Hu, James Allan, Rutambhara Joshi, Pingqing Fu, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, https://doi.org/10.5194/acp-19-447-2019, 2019
Short summary
Short summary
This work is part of the UK-China APHH campaign. We used a laser-only Aerodyne soot particle aerosol mass spectrometer, for the first time, to investigate the concentrations, size distributions and chemical compositions for those ambient submicron aerosol particles only with black carbon as cores. Our findings are valuable to understand the BC properties and processes in the densely populated megacities.
Qiang Huang, Jiubin Chen, Weilin Huang, John R. Reinfelder, Pingqing Fu, Shengliu Yuan, Zhongwei Wang, Wei Yuan, Hongming Cai, Hong Ren, Yele Sun, and Li He
Atmos. Chem. Phys., 19, 315–325, https://doi.org/10.5194/acp-19-315-2019, https://doi.org/10.5194/acp-19-315-2019, 2019
Short summary
Short summary
Although the specific reactions and mechanisms in fine aerosols could not be explicitly determined from this field study, our results provide isotopic evidence that local daily photochemical reduction of divalent Hg is of critical importance to the fate of PM2.5-Hg in urban atmospheres and that, in addition to variation in sources, photochemical reduction appears to be an important process that affects both the particle mass-specific abundance and isotopic composition of PM2.5-Hg.
Xiaole Pan, Baozhu Ge, Zhe Wang, Yu Tian, Hang Liu, Lianfang Wei, Siyao Yue, Itsushi Uno, Hiroshi Kobayashi, Tomoaki Nishizawa, Atsushi Shimizu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 219–232, https://doi.org/10.5194/acp-19-219-2019, https://doi.org/10.5194/acp-19-219-2019, 2019
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Mingjie Kang, Pingqing Fu, Kimitaka Kawamura, Fan Yang, Hongliang Zhang, Zhengchen Zang, Hong Ren, Lujie Ren, Ye Zhao, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 18, 13947–13967, https://doi.org/10.5194/acp-18-13947-2018, https://doi.org/10.5194/acp-18-13947-2018, 2018
Short summary
Short summary
Molecular characterization and spatial distribution of biogenic primary organic aerosol (POA) and secondary organic aerosol (SOA) in the marine atmosphere are not well known. Here, we analysed the organic molecular composition of marine aerosols collected during a marine cruise in the East China Sea during May–June 2014. Our results suggest that the Asian continent can be a natural emitter of biogenic POA and SOA, which can be transported to the downwind marine atmosphere.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
Yele Sun, Weiqi Xu, Qi Zhang, Qi Jiang, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Jie Li, John Jayne, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, https://doi.org/10.5194/acp-18-8469-2018, 2018
Short summary
Short summary
We present a 2–year analysis of organic aerosol (OA) from highly time–resolved measurements by an aerosol chemical speciation monitor in the megacity of Beijing. The sources of OA were analyzed with the advanced factor analysis of a multilinear engine (ME-2). Our results showed very different seasonal patterns, relative humidity and temperature dependence, and sources regions among different OA factors. The sources and processes of OA factors, and their roles in haze pollution are elucidated.
Sekou Keita, Cathy Liousse, Véronique Yoboué, Pamela Dominutti, Benjamin Guinot, Eric-Michel Assamoi, Agnès Borbon, Sophie L. Haslett, Laetitia Bouvier, Aurélie Colomb, Hugh Coe, Aristide Akpo, Jacques Adon, Julien Bahino, Madina Doumbia, Julien Djossou, Corinne Galy-Lacaux, Eric Gardrat, Sylvain Gnamien, Jean F. Léon, Money Ossohou, E. Touré N'Datchoh, and Laurent Roblou
Atmos. Chem. Phys., 18, 7691–7708, https://doi.org/10.5194/acp-18-7691-2018, https://doi.org/10.5194/acp-18-7691-2018, 2018
Short summary
Short summary
This study provides emission factor (EF) data for elemental and organic carbon, total particulate matter and 58 volatile organic compound species for combustion sources specific to Africa to establish emission inventories with less uncertainty. EFs obtained in this study are generally higher than those in the literature whose values are used in emissions inventories for Africa. This shows that particles and VOC emissions were sometimes underestimated and underlines this study's importance.
Di Liu, Matthias Vonwiller, Jun Li, Junwen Liu, Sönke Szidat, Yanlin Zhang, Chongguo Tian, Yinjun Chen, Zhineng Cheng, Guangcai Zhong, Pingqing Fu, and Gan Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-295, https://doi.org/10.5194/acp-2018-295, 2018
Revised manuscript not accepted
Wei Zhou, Qingqing Wang, Xiujuan Zhao, Weiqi Xu, Chen Chen, Wei Du, Jian Zhao, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 18, 3951–3968, https://doi.org/10.5194/acp-18-3951-2018, https://doi.org/10.5194/acp-18-3951-2018, 2018
Short summary
Short summary
We present a 3-month analysis of submicron aerosols that were measured at 260 m on a meteorological tower in Beijing, China. The sources of organic aerosol (OA) were analyzed by using a multi-linear engine (ME-2). Our results showed significant changes in both primary and secondary OA composition from the non-heating season to the heating season. We also observed a considerable contribution (10–13%) of cooking OA at 260 m and very different OA composition between ground level and 260 m.
Wanyu Zhao, Kimitaka Kawamura, Siyao Yue, Lianfang Wei, Hong Ren, Yu Yan, Mingjie Kang, Linjie Li, Lujie Ren, Senchao Lai, Jie Li, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, https://doi.org/10.5194/acp-18-2749-2018, 2018
Short summary
Short summary
In this paper, we investigate the seasonal trends in concentrations and compound-specific stable carbon isotope ratios of low molecular weight dicarboxylic acids (C2–C12) and related compounds in fine aerosols (PM2.5) in Beijing. Our study demonstrates that, in addition to the production via photo-oxidation, high abundances of diacids and related compounds in Beijing are largely associated with anthropogenic primary emissions such as biomass burning, fossil fuel combustion and plastic burning.
Santosh Kumar Verma, Kimitaka Kawamura, Jing Chen, and Pingqing Fu
Atmos. Chem. Phys., 18, 81–101, https://doi.org/10.5194/acp-18-81-2018, https://doi.org/10.5194/acp-18-81-2018, 2018
Short summary
Short summary
East Asia has experienced rapid economic development in the last several decades, of which activities emit bioaerosols. The atmospheric particles are transported to downwind regions in the Pacific. To understand the atmospheric transport of bioaerosols, we conducted long-term observations of sugar components over Chichijima Island from 2001 to 2013. We found that atmospheric circulations significantly affect the seasonal variation of bioaerosol distributions over the western North Pacific.
Wei Du, Jian Zhao, Yuying Wang, Yingjie Zhang, Qingqing Wang, Weiqi Xu, Chen Chen, Tingting Han, Fang Zhang, Zhanqing Li, Pingqing Fu, Jie Li, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 17, 6797–6811, https://doi.org/10.5194/acp-17-6797-2017, https://doi.org/10.5194/acp-17-6797-2017, 2017
Short summary
Short summary
We conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing. The vertical differences strongly depend on particle sizes, with accumulation-mode particles being highly correlated at the two heights. We further demonstrated that regional emission controls have a dominant impact on accumulation-mode particles, while the influences on Aitken particles were much smaller due to the enhanced NPF events.
Jian Zhao, Wei Du, Yingjie Zhang, Qingqing Wang, Chen Chen, Weiqi Xu, Tingting Han, Yuying Wang, Pingqing Fu, Zifa Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 17, 3215–3232, https://doi.org/10.5194/acp-17-3215-2017, https://doi.org/10.5194/acp-17-3215-2017, 2017
Short summary
Short summary
We conducted aerosol particle composition measurements at ground level and 260 m with two aerosol mass spectrometers in Beijing during the 2015 China Victory Day parade. Our results showed a stronger impact of emission controls on inorganic aerosol than OA. A larger decrease in more oxidized SOA than the less oxidized one during the control period was also observed. Our results indicate that emission controls and the changes in meteorological conditions have affected SOA formation mechanisms.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Hui Zhang, Xuewu Fu, Che-Jen Lin, Lihai Shang, Yiping Zhang, Xinbin Feng, and Cynthia Lin
Atmos. Chem. Phys., 16, 13131–13148, https://doi.org/10.5194/acp-16-13131-2016, https://doi.org/10.5194/acp-16-13131-2016, 2016
Xuewu Fu, Xu Yang, Xiaofang Lang, Jun Zhou, Hui Zhang, Ben Yu, Haiyu Yan, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, https://doi.org/10.5194/acp-16-11547-2016, 2016
Yele Sun, Wei Du, Pingqing Fu, Qingqing Wang, Jie Li, Xinlei Ge, Qi Zhang, Chunmao Zhu, Lujie Ren, Weiqi Xu, Jian Zhao, Tingting Han, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, https://doi.org/10.5194/acp-16-8309-2016, 2016
Short summary
Short summary
We have a comprehensive characterization of the sources, variations and processes of submicron aerosols in Beijing in winter using HR-AMS and GC/MS measurements. The primary sources including traffic, cooking, biomass burning and coal combustion emissions, and secondary components were separated and quantified with PMF. Our results elucidated the important roles of primary emissions, particularly coal combustion, and aqueous-phase processing in the formation of severe air pollution in winter.
Yan-Lin Zhang, Kimitaka Kawamura, Ping Qing Fu, Suresh K. R. Boreddy, Tomomi Watanabe, Shiro Hatakeyama, Akinori Takami, and Wei Wang
Atmos. Chem. Phys., 16, 6407–6419, https://doi.org/10.5194/acp-16-6407-2016, https://doi.org/10.5194/acp-16-6407-2016, 2016
Short summary
Short summary
Here, based on three aircraft measurements over East Asia, we demonstrate an aqueous-phase mechanism for enhanced SOA production in the troposphere following correlation analysis of oxalic acid in tropospheric aerosols with other measured chemical variables including its precursors and its intermediate as well as biogenic-derived SOA from isoprene, monoterpenes and β-caryophyllene.
Jonas Sommar, Wei Zhu, Lihai Shang, Che-Jen Lin, and Xinbin Feng
Biogeosciences, 13, 2029–2049, https://doi.org/10.5194/bg-13-2029-2016, https://doi.org/10.5194/bg-13-2029-2016, 2016
Short summary
Short summary
A micrometeorological method (REA) has been implemented to assess the role of cereal crop fields in the North China Plain as a source or sink of elemental mercury vapor (Hg0) during the course of a full year. In combination with chamber measurements under the canopy, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the crop foliage, with net emissions prevailing from the ecosystem during the majority of a year.
S. Kundu, K. Kawamura, M. Kobayashi, E. Tachibana, M. Lee, P. Q. Fu, and J. Jung
Atmos. Chem. Phys., 16, 585–596, https://doi.org/10.5194/acp-16-585-2016, https://doi.org/10.5194/acp-16-585-2016, 2016
Short summary
Short summary
Chemistry-transport models have predicted a change in secondary organic aerosols (SOA) in the future atmosphere with a large uncertainty. This study measures diacids, major water-soluble surrogates of SOA, on a sub-decadal scale in atmospheric aerosols in eastern Asia. Diacids are observed to increase by 3.9–47.4 % per year. The increases in the water-soluble organic acid fraction could modify the aerosol organic composition and its sensitivity to climate-relevant physical properties.
W. Q. Xu, Y. L. Sun, C. Chen, W. Du, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, X. J. Zhao, L. B. Zhou, D. S. Ji, P. C. Wang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, https://doi.org/10.5194/acp-15-13681-2015, 2015
Short summary
Short summary
We have investigated the response of aerosol composition, size distributions, and oxidation properties to emission controls during the 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing. Our results showed substantial changes of aerosol bulk composition during APEC with the most reductions in secondary aerosols in large accumulation modes, demonstrating that that emission controls over regional scales can substantially reduce secondary particulates.
C. Chen, Y. L. Sun, W. Q. Xu, W. Du, L. B. Zhou, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, Z. Q. Gao, Q. Zhang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, https://doi.org/10.5194/acp-15-12879-2015, 2015
Short summary
Short summary
A comprehensive characterization of submicron aerosol composition and sources at 260m in urban Beijing during APEC 2014 is presented. Aerosol species were shown to decrease substantially by 40–80% during APEC, whereas the bulk composition was relatively similar to the result of synergetic controls of secondary precursors. Our results elucidated that the good air quality during APEC was the combined result of emission controls and meteorological effects, with the former playing the dominant role.
Y. L. Sun, Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang, P. Q. Fu, X. L. Pan, J. Li, J. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp-15-10149-2015, https://doi.org/10.5194/acp-15-10149-2015, 2015
Short summary
Short summary
We conducted the first long-term real-time measurement of submicron aerosol composition in Beijing using an ACSM for 1 year. The seasonal variations of mass concentrations and chemical composition of submicron aerosol were investigated in detail, and the meteorological effects on aerosol chemistry, particularly temperature and relative humidity, were elucidated. Finally, the potential source areas of aerosol species during four seasons were identified.
C. M. Pavuluri, K. Kawamura, and P. Q. Fu
Atmos. Chem. Phys., 15, 9883–9896, https://doi.org/10.5194/acp-15-9883-2015, https://doi.org/10.5194/acp-15-9883-2015, 2015
Z. Cong, S. Kang, K. Kawamura, B. Liu, X. Wan, Z. Wang, S. Gao, and P. Fu
Atmos. Chem. Phys., 15, 1573–1584, https://doi.org/10.5194/acp-15-1573-2015, https://doi.org/10.5194/acp-15-1573-2015, 2015
P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang
Atmos. Chem. Phys., 14, 4185–4199, https://doi.org/10.5194/acp-14-4185-2014, https://doi.org/10.5194/acp-14-4185-2014, 2014
Y. Kanaya, H. Akimoto, Z.-F. Wang, P. Pochanart, K. Kawamura, Y. Liu, J. Li, Y. Komazaki, H. Irie, X.-L. Pan, F. Taketani, K. Yamaji, H. Tanimoto, S. Inomata, S. Kato, J. Suthawaree, K. Okuzawa, G. Wang, S. G. Aggarwal, P. Q. Fu, T. Wang, J. Gao, Y. Wang, and G. Zhuang
Atmos. Chem. Phys., 13, 8265–8283, https://doi.org/10.5194/acp-13-8265-2013, https://doi.org/10.5194/acp-13-8265-2013, 2013
Y. L. Sun, Z. F. Wang, P. Q. Fu, T. Yang, Q. Jiang, H. B. Dong, J. Li, and J. J. Jia
Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, https://doi.org/10.5194/acp-13-4577-2013, 2013
C. M. Pavuluri, K. Kawamura, N. Mihalopoulos, and P. Fu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-6589-2013, https://doi.org/10.5194/acpd-13-6589-2013, 2013
Revised manuscript not accepted
P. Q. Fu, K. Kawamura, J. Chen, B. Charrière, and R. Sempéré
Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, https://doi.org/10.5194/bg-10-653-2013, 2013
G. H. Wang, B. H. Zhou, C. L. Cheng, J. J. Cao, J. J. Li, J. J. Meng, J. Tao, R. J. Zhang, and P. Q. Fu
Atmos. Chem. Phys., 13, 819–835, https://doi.org/10.5194/acp-13-819-2013, https://doi.org/10.5194/acp-13-819-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Nitrate chemistry in the northeast US – Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry
Nitrate chemistry in the northeast US – Part 2: Oxygen isotopes reveal differences in particulate and gas-phase formation
Photolytic modification of seasonal nitrate isotope cycles in East Antarctica
Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions
Methane (CH4) sources in Krakow, Poland: insights from isotope analysis
Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia
Measurement report: Nitrogen isotopes (δ15N) and first quantification of oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide
Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?
Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015
An improved estimate for the δ13C and δ18O signatures of carbon monoxide produced from atmospheric oxidation of volatile organic compounds
Seasonality in the Δ33S measured in urban aerosols highlights an additional oxidation pathway for atmospheric SO2
The Δ17O and δ18O values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources – implications for polluted air masses
A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane
Detection and variability of combustion-derived vapor in an urban basin
Stable sulfur isotope measurements to trace the fate of SO2 in the Athabasca oil sands region
Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition
Isotopic constraints on heterogeneous sulfate production in Beijing haze
Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland
Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica
Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer
In situ observations of the isotopic composition of methane at the Cabauw tall tower site
Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign
Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica
Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto
WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere
Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere
Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning
Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer
Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods
Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis
Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations
Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events
Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China
Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle
Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O
Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling
Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021, https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
Short summary
Using measurements of methane isotopes in ambient air and a 3D atmospheric transport model, in Krakow, Poland, we mainly detected fossil-fuel-related sources, coming from coal mining in Silesia and from the use of natural gas in the city. Emission inventories report large emissions from coal mine activity in Silesia, which is in agreement with our measurements. However, methane sources in the urban area of Krakow related to the use of fossil fuels might be underestimated in the inventories.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020, https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
Short summary
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes in sea ice cover, with distinct values when Baffin Bay is ice covered in winter vs. open in summer. Resulting changes in moisture transport, surface winds, and air temperature also modify the isotopes. Local glacial ice may thus preserve past changes in the Baffin Bay sea ice extent, and this will help us better understand how the Arctic environment and water cycle responds to global climate change.
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723, https://doi.org/10.5194/acp-20-9713-2020, https://doi.org/10.5194/acp-20-9713-2020, 2020
Short summary
Short summary
We found that Br atoms in the marine boundary layer are the most probable oxidizer that transform gaseous elemental mercury into gaseous oxidized mercury, according to the mercury isotopes in the total gaseous mercury. On the other hand, Br or Cl atoms are not the primary oxidizers that produced oxidized mercury on particles. This study showed that mercury isotopes can provide new evidence that help us to fully understand the transformations of atmospheric mercury.
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020, https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Short summary
We observed the isotopic composition of nitrous oxide in the unpolluted air at Jungfraujoch for 5 years. Our results indicate a clear seasonal pattern in the isotopic composition, corresponding with that in atmospheric nitrous oxide levels. This is most likely due to temporal variations in both emission processes and air mass sources for Jungfraujoch. Our findings are of importance to global nitrous oxide modelling and to better understanding of long-term trends in atmospheric nitrous oxide.
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020, https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Short summary
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at low accumulation sites in Antarctica leaves an UV imprint in the snow. Quantifying how nitrate isotope values change allows us to interpret longer ice core records. Based on nitrate observations and modelling at Kohnen, East Antarctica, the dominant factors controlling the nitrate isotope signature in deep snow layers are the depth of light penetration into the snowpack and the snow accumulation rate.
Isabelle Genot, David Au Yang, Erwan Martin, Pierre Cartigny, Erwann Legendre, and Marc De Rafelis
Atmos. Chem. Phys., 20, 4255–4273, https://doi.org/10.5194/acp-20-4255-2020, https://doi.org/10.5194/acp-20-4255-2020, 2020
Short summary
Short summary
Given their critical impact on radiative forcing, sulfate aerosols have been extensively studied using their isotope signatures (δ34S, ∆33S, ∆36S, δ18O, and ∆17O). A striking observation is that ∆33S > 0 ‰, implying a missing reservoir in the sulfur cycle. Here, we measured ∆33S < 0 ‰ in black crust sulfates (i.e., formed on carbonate walls) that must therefore result from distinct chemical pathway(s) compared to sulfate aerosols, and they may well represent this complementary reservoir.
Angelina Wenger, Katherine Pugsley, Simon O'Doherty, Matt Rigby, Alistair J. Manning, Mark F. Lunt, and Emily D. White
Atmos. Chem. Phys., 19, 14057–14070, https://doi.org/10.5194/acp-19-14057-2019, https://doi.org/10.5194/acp-19-14057-2019, 2019
Short summary
Short summary
We present 14CO2 observations at a background site in Ireland and a tall tower site in the UK. These data have been used to calculate the contribution of fossil fuel sources to atmospheric CO2 mole fractions from the UK and Ireland. 14CO2 emissions from nuclear industry sites in the UK cause a higher uncertainty in the results compared to observations in other locations. The observed ffCO2 at the site was not significantly different from simulated values based on the bottom-up inventory.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
David Au Yang, Pierre Cartigny, Karine Desboeufs, and David Widory
Atmos. Chem. Phys., 19, 3779–3796, https://doi.org/10.5194/acp-19-3779-2019, https://doi.org/10.5194/acp-19-3779-2019, 2019
Short summary
Short summary
Sulfates present in urban aerosols collected worldwide usually exhibit 33S-anomalies whose origin remains unclear. Besides, the sulfate concentration is not very well modelled nowadays, which, coupled with the isotopic composition anomaly on the 33S, would highlight the presence of at least an additional oxidation pathway, different from O2+TMI, O3, OH, H2O2 and NO2. We suggest here the implication of two other possible oxidation pathways.
Martine M. Savard, Amanda S. Cole, Robert Vet, and Anna Smirnoff
Atmos. Chem. Phys., 18, 10373–10389, https://doi.org/10.5194/acp-18-10373-2018, https://doi.org/10.5194/acp-18-10373-2018, 2018
Short summary
Short summary
Improving air quality requires understanding of the atmospheric processes transforming nitrous oxides emitted by human activities into nitrates, an N form that may degrade natural ecosystems. Isotopes (∆17O, δ18O) are characterized in separate wet, particulate and gaseous nitrates for the first time. The gas ranges are distinct from those of the other nitrates, and the plume dynamics emerge as crucial in interpreting the results, which unravel key processes behind the distribution of nitrates.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Neda Amiri, Roya Ghahreman, Ofelia Rempillo, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, and Ann-Lise Norman
Atmos. Chem. Phys., 18, 7757–7780, https://doi.org/10.5194/acp-18-7757-2018, https://doi.org/10.5194/acp-18-7757-2018, 2018
David M. Nelson, Urumu Tsunogai, Dong Ding, Takuya Ohyama, Daisuke D. Komatsu, Fumiko Nakagawa, Izumi Noguchi, and Takashi Yamaguchi
Atmos. Chem. Phys., 18, 6381–6392, https://doi.org/10.5194/acp-18-6381-2018, https://doi.org/10.5194/acp-18-6381-2018, 2018
Short summary
Short summary
Atmospheric nitrate may be produced locally and/or come from upwind regions. To address this issue we measured oxygen and nitrogen isotopes of wet and dry nitrate deposition at nearby urban and rural sites. Our results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments results from local NOx emissions more so than wet deposition, which is transported longer distances.
Pengzhen He, Becky Alexander, Lei Geng, Xiyuan Chi, Shidong Fan, Haicong Zhan, Hui Kang, Guangjie Zheng, Yafang Cheng, Hang Su, Cheng Liu, and Zhouqing Xie
Atmos. Chem. Phys., 18, 5515–5528, https://doi.org/10.5194/acp-18-5515-2018, https://doi.org/10.5194/acp-18-5515-2018, 2018
Short summary
Short summary
We use observations of the oxygen isotopic composition of sulfate aerosol as a fingerprint to quantify various sulfate formation mechanisms during pollution events in Beijing, China. We found that heterogeneous reactions on aerosols dominated sulfate production in general; however, in-cloud reactions would dominate haze sulfate production when cloud liquid water content was high. The findings also suggest the heterogeneity of aerosol acidity should be parameterized in models.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Mathias Lanoisellé, Bryce F. J. Kelly, Jaroslaw M. Necki, Charlotte P. Iverach, Elisa Ginty, Miroslaw Zimnoch, Alina Jasek, and Euan G. Nisbet
Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, https://doi.org/10.5194/acp-16-13669-2016, 2016
Short summary
Short summary
Methane emissions estimates from the coal sector are highly uncertain. Precise δ13C isotopic signatures of methane sources can be used in atmospheric models for a methane budget assessment. Emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised using high-precision measurements of δ13C values. Representative isotopic signatures were provided, taking into account specific ranks of coal and mine type.
Qianjie Chen, Lei Geng, Johan A. Schmidt, Zhouqing Xie, Hui Kang, Jordi Dachs, Jihong Cole-Dai, Andrew J. Schauer, Madeline G. Camp, and Becky Alexander
Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, https://doi.org/10.5194/acp-16-11433-2016, 2016
Short summary
Short summary
The formation mechanisms of sulfate in the marine boundary layer are not well understood, which could result in large uncertainties in aerosol radiative forcing. We measure the oxygen isotopic composition (Δ17O) of sulfate collected in the MBL and analyze with a global transport model. Our results suggest that 33–50 % of MBL sulfate is formed via oxidation of S(IV) by hypohalous acids HOBr / HOCl in the aqueous phase, and the daily-mean HOBr/HOCl concentrations are on the order of 0.01–0.1 ppt.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. Saccon, A. Kornilova, L. Huang, S. Moukhtar, and J. Rudolph
Atmos. Chem. Phys., 15, 10825–10838, https://doi.org/10.5194/acp-15-10825-2015, https://doi.org/10.5194/acp-15-10825-2015, 2015
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
J. Wintel, E. Hösen, R. Koppmann, M. Krebsbach, A. Hofzumahaus, and F. Rohrer
Atmos. Chem. Phys., 13, 11059–11071, https://doi.org/10.5194/acp-13-11059-2013, https://doi.org/10.5194/acp-13-11059-2013, 2013
F. A. Haumann, A. M. Batenburg, G. Pieterse, C. Gerbig, M. C. Krol, and T. Röckmann
Atmos. Chem. Phys., 13, 9401–9413, https://doi.org/10.5194/acp-13-9401-2013, https://doi.org/10.5194/acp-13-9401-2013, 2013
C. J. Sapart, P. Martinerie, E. Witrant, J. Chappellaz, R. S. W. van de Wal, P. Sperlich, C. van der Veen, S. Bernard, W. T. Sturges, T. Blunier, J. Schwander, D. Etheridge, and T. Röckmann
Atmos. Chem. Phys., 13, 6993–7005, https://doi.org/10.5194/acp-13-6993-2013, https://doi.org/10.5194/acp-13-6993-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
A. Guillon, K. Le Ménach, P.-M. Flaud, N. Marchand, H. Budzinski, and E. Villenave
Atmos. Chem. Phys., 13, 2703–2719, https://doi.org/10.5194/acp-13-2703-2013, https://doi.org/10.5194/acp-13-2703-2013, 2013
D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni, N. Perron, L. Wacker, S. Leinert, V. Remeikis, M. C. Facchini, A. S. H. Prevot, S. G. Jennings, M. Ramonet, and C. D. O'Dowd
Atmos. Chem. Phys., 11, 8593–8606, https://doi.org/10.5194/acp-11-8593-2011, https://doi.org/10.5194/acp-11-8593-2011, 2011
A. M. Batenburg, S. Walter, G. Pieterse, I. Levin, M. Schmidt, A. Jordan, S. Hammer, C. Yver, and T. Röckmann
Atmos. Chem. Phys., 11, 6985–6999, https://doi.org/10.5194/acp-11-6985-2011, https://doi.org/10.5194/acp-11-6985-2011, 2011
B. Tuzson, S. Henne, D. Brunner, M. Steinbacher, J. Mohn, B. Buchmann, and L. Emmenegger
Atmos. Chem. Phys., 11, 1685–1696, https://doi.org/10.5194/acp-11-1685-2011, https://doi.org/10.5194/acp-11-1685-2011, 2011
Y. T. Fang, K. Koba, X. M. Wang, D. Z. Wen, J. Li, Y. Takebayashi, X. Y. Liu, and M. Yoh
Atmos. Chem. Phys., 11, 1313–1325, https://doi.org/10.5194/acp-11-1313-2011, https://doi.org/10.5194/acp-11-1313-2011, 2011
S. S. Assonov, C. A. M. Brenninkmeijer, T. J. Schuck, and P. Taylor
Atmos. Chem. Phys., 10, 8575–8599, https://doi.org/10.5194/acp-10-8575-2010, https://doi.org/10.5194/acp-10-8575-2010, 2010
U. Tsunogai, D. D. Komatsu, S. Daita, G. A. Kazemi, F. Nakagawa, I. Noguchi, and J. Zhang
Atmos. Chem. Phys., 10, 1809–1820, https://doi.org/10.5194/acp-10-1809-2010, https://doi.org/10.5194/acp-10-1809-2010, 2010
M. M. Frey, J. Savarino, S. Morin, J. Erbland, and J. M. F. Martins
Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, https://doi.org/10.5194/acp-9-8681-2009, 2009
S. A. Vay, S. C. Tyler, Y. Choi, D. R. Blake, N. J. Blake, G. W. Sachse, G. S. Diskin, and H. B. Singh
Atmos. Chem. Phys., 9, 4973–4985, https://doi.org/10.5194/acp-9-4973-2009, https://doi.org/10.5194/acp-9-4973-2009, 2009
Cited articles
Bergquist, B. A. and Blum, J. D.: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417–420, 2007.
Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., and Xie, Z. Q.: Natural mercury isotope variation in coal deposits and organic soils, Environ. Sci. Technol., 42, 8303–8309, 2008.
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, 2007.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury isotopes in earth and environmental sciences, Annu. Revi. Earth Pl. Sc., 42, 249–269, 2014.
Buchachenko, A. L.: Mercury isotope effects in the environmental chemistry and biochemistry of mercury-containing compounds, Russ. Chem. Rev., 78, 319–328, 2009.
Cai, H. and Chen, J.: Mass-independent fractionation of even mercury isotopes, Sci. Bull., 61, 116–124, 2016.
Carignan, J., Estrade, N., Sonke, J. E., and Donard, O. F. X.: Odd isotope deficits in atmospheric Hg measured in Lichens, Environ. Sci. Technol., 43, 5660–5664, 2009.
Chen, J. B., Hintelmann, H., and Dimock, B.: Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS, J. Anal. At. Spectrom., 25, 1402–1409, 2010.
Chen, J. B., Hintelmann, H., Feng, X. B., and Dimock, B.: Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada, Geochim. Cosmochim. Acta, 90, 33–46, 2012.
Chen, J. B., Gaillardet, J., Bouchez, J., Louvat, P., and Wang, Y. N.: Anthropophile elements in river sediments: Overview from the Seine River, France, Geochem. Geophys. Geosys., 15, 4526–4546, 2014.
Das, R., Wang, X., Khezri, B., Webster, R. D., Sikdar, P. K., and Datta, S.: Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata, India, Elementa, 4, 000098, https://doi.org/10.12952/journal.elementa.000098, 2016.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cy., 27, 222–238, 2013.
Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J., and Dvonch, J. T.: Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-region near Pensacola, Florida, USA, Global Biogeochem. Cy., 29, 1689–1705, 2015a.
Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J., and Dvonch, J. T.: Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-industrial region near Pensacola, Florida, USA, Global Biogeochem. Cy., 29, 1689–1705, 2015b.
Eiler, J. M., Bergquist, B., Bourg, I., Cartigny, P., Farquhar, J., Gagnon, A., Guo, W., Halevy, I., Hofmann, A., Larson, T. E., Levin, N., Schauble, E. A., and Stolper, D.: Frontiers of stable isotope geoscience, Chem. Geol., 372, 119–143, 2014.
Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition, Environ. Sci. Technol., 50, 2405–2412, 2016.
Estrade, N., Carignan, J., and Donard, O. F. X.: Tracing and quantifying anthropogenic mercury sources in soils of northern France using isotopic signatures, Environ. Sci. Technol., 45, 1235–1242, 2011.
Feng, X. B., Foucher, D., Hintelmann, H., Yan, H. Y., He, T. R., and Qiu, G. L.: Tracing mercury contamination sources in sediments using mercury isotope compositions, Environ. Sci. Technol., 44, 3363–3368, 2010.
Fu, X., Marusczak, N., Wang, X., Gheusi, F., and Sonke, J. E.: Isotopic Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France, Environ. Sci. Technol., 50, 5641–5650, 2016.
Fu, X. W., Feng, X. B., Zhu, W. Z., Zheng, W., Wang, S. F., and Lu, J. Y.: Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China, Appl. Geochem., 23, 408–418, 2008.
Fu, X. W., Feng, X. B., Qiu, G. L., Shang, L. H., and Zhang, H.: Speciated atmospheric mercury and its potential source in Guiyang, China, Atmos. Environ., 45, 4205–4212, 2011.
Fu, X. W., Feng, X. B., Sommar, J., and Wang, S. F.: A review of studies on atmospheric mercury in China, Sci. Total Environ., 421, 73–81, 2012.
Fu, X. W., Heimburger, L. E., and Sonke, J. E.: Collection of atmospheric gaseous mercury for stable isotope analysis using iodine- and chlorine-impregnated activated carbon traps, J. Anal. At. Spectrom., 29, 841–852, 2014.
Gao, J., Tian, H., Cheng, K., Lu, L., Zheng, M., Wang, S., Hao, J., Wang, K., Hua, S., Zhu, C., and Wang, Y.: The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China, Atmos. Environ., 107, 1–8, https://doi.org/10.1016/j.atmosenv.2015.02.022, 2015.
Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M., Gigliotti, C. L., Van Ry, D. A., Glenn, T. R., and Eisenreich, S. J.: Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary, Atmos. Environ., 36, 1077–1086, 2002.
Ghosh, S., Schauble, E. A., Lacrampe Couloume, G., Blum, J. D., and Bergquist, B. A.: Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid–vapor evaporation experiments, Chem. Geol., 336, 5–12, 2013.
Gratz, L. E., Keeler, G. J., Blum, J. D., and Sherman, L. S.: Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air, Environ. Sci. Technol., 44, 7764–7770, 2010.
Han, L., Cheng, S., Zhuang, G., Ning, H., Wang, H., Wei, W., and Zhao, X.: The changes and long-range transport of PM2.5 in Beijing in the past decade, Atmos. Environ., 110, 186–195, 2015.
Hintelmann, H. and Lu, S. Y.: High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry, Analyst, 128, 635–639, 2003.
Hintelmann, H. and Zheng, W.: Tracking geochemical transformations and transport of mercury through isotope fractionation, in: Environmental Chemistry and Toxicology of Mercury, John Wiley & Sons New York, 293–327, 2012.
Huang, M. J., Wang, W., Leung, H. M., Chan, C. Y., Liu, W. K., Wong, M. H., and Cheung, K. C.: Mercury levels in road dust and household TSP/PM2.5 related to concentrations in hair in Guangzhou, China, Ecotox. Environ. Safe, 81, 27–35, 2012.
Huang, Q., Liu, Y. L., Chen, J. B., Feng, X. B., Huang, W. L., Yuan, S. L., Cai, H. M., and Fu, X. W.: An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement, J. Anal. Atom. Spectrom., 30, 957–966, 2015.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., and Canonaco, F.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, 2014.
Jackson, T. A., Muir, D. C. G., and Vincent, W. F.: Historical variations in the stable isotope composition of mercury in Arctic lake sediments, Environ. Sci. Technol., 38, 2813–2821, 2004.
Jackson, T. A., Whittle, D. M., Evans, M. S., and Muir, D. C. G.: Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems, Appl. Geochem., 23, 547–571, 2008.
Jackson, T. A., Telmer, K. H., and Muir, D. C. G.: Mass-dependent and mass-independent variations in the isotope composition of mercury in cores from lakes polluted by a smelter: Effects of smelter emissions, natural processes, and their interactions, Chem. Geol., 352, 27–46, 2013.
Jackson, T. A.: Evidence for mass-independent fractionation of mercury isotopes by microbial activities linked to geographically and temporally varying climatic conditions in Arctic and subarctic Lakes, Geomicrobiol. J., 32, 799–826, 2015.
Jiskra, M., Wiederhold, J. G., Bourdon, B., and Kretzschmar, R.: Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite, Environ. Sci. Technol., 46, 6654–6662, 2012.
Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R.-M., Hajdas, I., and Kretzschmar, R.: Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg Isotope Signatures, Environ. Sci. Technol., 49, 7188–7196, 2015.
Kim, P. R., Han, Y. J., Holsen, T. M., and Yi, S. M.: Atmospheric particulate mercury: Concentrations and size distributions, Atmos. Environ., 61, 94–102, 2012.
Kim, S. H., Han, Y. J., Holsen, T. M., and Yi, S. M.: Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, Atmos. Environ., 43, 3267–3274, 2009.
Li, J., Sommar, J., Wangberg, I., Lindqvist, O., and Wei, S. Q.: Short-time variation of mercury speciation in the urban of Goteborg during GOTE-2005, Atmos. Environ., 42, 8382–8388, 2008.
Lin, C. Y., Wang, Z., Chen, W. N., Chang, S. Y., Chou, C. C. K., Sugimoto, N., and Zhao, X.: Long-range transport of Asian dust and air pollutants to Taiwan: Observed evidence and model simulation, Atmos. Chem. Phys., 7, 423–434, https://doi.org/10.5194/acp-7-423-2007, 2007.
Lin, H., Yuan, D., Lu, B., Huang, S., Sun, L., Zhang, F., and Gao, Y.: Isotopic composition analysis of dissolved mercury in seawater with purge and trap preconcentration and a modified Hg introduction device for MC-ICP-MS, J. Anal. Atom. Spectrom., 30, 353–359, 2015a.
Lin, Y.-C., Hsu, S.-C., Chou, C. C. K., Zhang, R., Wu, Y., Kao, S.-J., Luo, L., Huang, C.-H., Lin, S.-H., and Huang, Y.-T.: Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals, Environ. Pollut., 208, 284–293, 2015b.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J. T.: Temporal variability of mercury speciation in urban air, Atmos. Environ., 41, 1911–1923, 2007.
Ma, J., Hintelmann, H., Kirk, J. L., and Muir, D. C. G.: Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba, Chem. Geol., 336, 96–102, 2013.
Malinovsky, D., Latruwe, K., Moens, L., and Vanhaecke, F.: Experimental study of mass-independence of Hg isotope fractionation during photodecomposition of dissolved methylmercury, J. Anal. Atom. Spectrom., 25, 950–956, 2010.
Masbou, J., Point, D., Sonke, J. E., Frappart, F., Perrot, V., Amouroux, D., Richard, P., and Becker, P. R.: Hg stable isotope time trend in ringed seals registers decreasing sea ice cover in the Alaskan Arctic, Environ. Sci. Technol., 49, 8977–8985, 2015.
Mbengue, S., Alleman, L. Y., and Flament, P.: Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France, Atmos. Res., 135, 35–47, 2014.
Nzihou, A. and Stanmore, B.: The fate of heavy metals during combustion and gasification of contaminated biomass: A brief review, J. Hazard. Mater., 256–257, 56–66, 2013.
Rolison, J. M., Landing, W. M., Luke, W., Cohen, M., and Salters, V. J. M.: Isotopic composition of species-specific atmospheric Hg in a coastal environment, Chem. Geol., 336, 37–49, 2013.
Rudnick, R., and Gao, S.: Composition of the continental crust, Treatise on Geochemistry, 3, 1–64, 2003.
Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R. C., Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A. L.: Brownness of organics in aerosols from biomass burning linked to their black carbon content, Nat. Geosci., 7, 647–650, 2014.
Schauble, E. A.: Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements, Geochim. Cosmochim. Acta, 71, 2170–2189, 2007.
Schleicher, N. J., Schäfer, J., Blanc, G., Chen, Y., Chai, F., Cen, K., and Norra, S.: Atmospheric particulate mercury in the megacity Beijing: Spatio-temporal variations and source apportionment, Atmos. Environ., 109, 251–261, 2015.
Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., and Saxena, P.: Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter, Atmos. Environ., 32, 2649–2657, 1998.
Selin, N. E.: Global biogeochemical cycling of mercury: A review, Annu. Rev. Env. Resour., 34, 43–63, 2009.
Sherman, L. S., Blum, J. D., Johnson, K. P., Keeler, G. J., Barres, J. A., and Douglas, T. A.: Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight, Nat. Geosci., 3, 173–177, 2010.
Sherman, L. S., Blum, J. D., Keeler, G. J., Demers, J. D., and Dvonch, J. T.: Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes, Environ. Sci. Technol., 46, 382–390, 2012.
Sherman, L. S., Blum, J. D., Franzblau, A., and Basu, N.: New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes, Environ. Sci. Technol., 47, 3403–3409, 2013.
Sherman, L. S., Blum, J. D., Dvonch, J. T., Gratz, L. E., and Landis, M. S.: The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution, Sci. Total Environ., 502, 362–374, 2015.
Smith, C. N., Kesler, S. E., Blum, J. D., and Rytuba, J. J.: Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California coast ranges, USA, Earth. Planet. Sci. Lett., 269, 398–406, 2008.
Smith, R. S., Wiederhold, J. G., and Kretzschmar, R.: Mercury isotope fractionation during precipitation of metacinnabar (β-HgS) and montroydite (HgO), Environ. Sci. Technol., 49, 4325–4334, 2015.
Song, S., Wu, Y., Jiang, J., Yang, L., Cheng, Y., and Hao, J.: Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China, Environ. Pollut., 161, 215–221, 2012.
Song, Y., Tang, X. Y., Xie, S. D., Zhang, Y. H., Wei, Y. J., Zhang, M. S., Zeng, L. M., and Lu, S. H.: Source apportionment of PM2.5 in Beijing in 2004, J. Hazard. Mater., 146, 124–130, 2007.
Sonke, J. E.: A global model of mass independent mercury stable isotope fractionation, Geochim. Cosmochim. Acta, 75, 4577–4590, 2011.
Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., and Feng, X.: Anthropogenic mercury emissions in China, Atmos. Environ., 39, 7789–7806, 2005.
Sun, G., Sommar, J., Feng, X., Lin, C.-J., Ge, M., Wang, W., Yin, R., Fu, X., and Shang, L.: Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br, Environ. Sci. Technol., 50, 9232–9241, 2016.
Sun, R., Sonke, J. E., Heimbürger, L.-E., Belkin, H. E., Liu, G., Shome, D., Cukrowska, E., Liousse, C., Pokrovsky, O. S., and Streets, D. G.: Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions, Environ. Sci. Technol., 48, 7660–7668, 2014.
Sun, R. Y., Heimburger, L. E., Sonke, J. E., Liu, G. J., Amouroux, D., and Berail, S.: Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants, Chem. Geol., 336, 103–111, 2013.
Waheed, A., Li, X. L., Tan, M. G., Bao, L. M., Liu, J. F., Zhang, Y. X., Zhang, G. L., and Li, Y.: Size Distribution and Sources of Trace Metals in Ultrafine/Fine/Coarse Airborne Particles in the Atmosphere of Shanghai, Aerosol Sci. Technol., 45, 163–171, 2011.
Wang, H., Kawamura, K., and Shooter, D.: Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion, Atmos. Environ., 39, 5865–5875, 2005.
Wang, L., Liu, Z., Sun, Y., Ji, D., and Wang, Y.: Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010, Atmos. Res., 157, 37–48, 2015a.
Wang, Z., Chen, J., Feng, X., Hintelmann, H., Yuan, S., Cai, H., Huang, Q., Wang, S., and Wang, F.: Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China, C. R. Geosci., 347, 358–367,2015b.
Wang, Z. W., Zhang, X. S., Chen, Z. S., and Zhang, Y.: Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China, Atmos. Environ., 40, 2194–2201, 2006.
Wiederhold, J. G., Cramer, C. J., Daniel, K., Infante, I., Bourdon, B., and Kretzschmar, R.: Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg, Environ. Sci. Technol., 44, 4191–4197, 2010.
Won, J. H., Park, J. Y., and Lee, T. G.: Mercury emissions from automobiles using gasoline, diesel, and LPG, Atmos. Environ., 41, 7547–7552, 2007.
Xiu, G. L., Cai, J., Zhang, W. Y., Zhang, D. N., Bueler, A., Lee, S. C., Shen, Y., Xu, L. H., Huang, X. J., and Zhang, P.: Speciated mercury in size-fractionated particles in Shanghai ambient air, Atmos. Environ., 43, 3145–3154, 2009.
Xu, L. L., Chen, J. S., Niu, Z. C., Yin, L. Q., and Chen, Y. T.: Characterization of mercury in atmospheric particulate matter in the southeast coastal cities of China, Atmos. Pollut. Res., 4, 454–461, 2013.
Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., and Sheng, C.: Status of trace element emission in a coal combustion process: A review, Fuel Process. Technol., 85, 215–237, 2004.
Yin, R., Feng, X., and Shi, W.: Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review, Appl. Geochem., 25, 1467–1477, 2010.
Yin, R. S., Feng, X. B., and Meng, B.: Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China, Environ. Sci. Technol., 47, 2238–2245, 2013.
Yin, R. S., Feng, X. B., and Chen, J. B.: Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications, Environ. Sci. Technol., 48, 5565–5574, 2014.
Yuan, S., Zhang, Y., Chen, J., Kang, S., Zhang, J., Feng, X., Cai, H., Wang, Z., Wang, Z., and Huang, Q.: Large variation of mercury isotope composition during a single precipitation event at Lhasa city, Tibetan Plateau, China, Procedia Earth and Planetary Science, 13, 282–286, 2015.
Zambardi, T., Sonke, J. E., Toutain, J. P., Sortino, F., and Shinohara, H.: Mercury emissions and stable isotopic compositions at Vulcano Island (Italy), Earth. Planet. Sci. Lett., 277, 236–243, 2009.
Zhang, H., Yin, R. S., Feng, X. B., Sommar, J., Anderson, C. W. N., Sapkota, A., Fu, X. W., and Larssen, T.: Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures, Sci. Rep., 3, 3322, https://doi.org/10.1038/srep03322, 2013a.
Zhang, L., Wang, S. X., Wang, L., and Hao, J. M.: Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources, Atmos. Chem. Phys., 13, 10505–10516, https://doi.org/10.5194/acp-13-10505-2013, 2013b.
Zhang, L., Wang, S. X., Wang, L., Wu, Y., Duan, L., Wu, Q. R., Wang, F. Y., Yang, M., Yang, H., Hao, J. M., and Liu, X.: Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China, Environ. Sci. Technol., 49, 3185–3194, 2015.
Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao, M.: Characteristics of particulate carbon emissions from real-world Chinese coal combustion, Environ. Sci. Technol., 42, 5068–5073, 2008.
Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., and Cass, G. R.: Seasonal trends in PM2.5 source contributions in Beijing, China, Atmos. Environ., 39, 3967–3976, 2005a.
Zheng, W. and Hintelmann, H.: Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio, Geochim. Cosmochim. Acta, 73, 6704–6715, 2009.
Zheng, W. and Hintelmann, H.: Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds, J. Phys. Chem. A, 114, 4246–4253, 2010a.
Zheng, W. and Hintelmann, H.: Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light, J. Phys. Chem. A, 114, 4238–4245, 2010b.
Zheng, W., Foucher, D., and Hintelmann, H.: Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase, J. Anal. At. Spectrom., 22, 1097–1104, 2007.
Zheng, X., Liu, X., Zhao, F., Duan, F., Yu, T., and H, C.: Seasonal characteristics of biomass burning contribution to Beijing aerosol, Sci. China Ser. B, 48, 481–488, 2005b.
Zhou, J., Zhang, R., Cao, J., Chow, J. C., and Watson, J. G.: Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility, Aerosol Air Qual. Res., 12, 492–502, 2012.
Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Sun, J., Zhuang, B., Li, S., Han, Y., and Xie, M.: Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China, Atmos. Chem. Phys., 14, 2233–2244, https://doi.org/10.5194/acp-14-2233-2014, 2014.
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its...
Altmetrics
Final-revised paper
Preprint