Articles | Volume 16, issue 18
Atmos. Chem. Phys., 16, 11773–11786, 2016

Special issue: Data collection, analysis and application of speciated atmospheric...

Atmos. Chem. Phys., 16, 11773–11786, 2016

Research article 22 Sep 2016

Research article | 22 Sep 2016

Isotopic composition for source identification of mercury in atmospheric fine particles

Qiang Huang et al.

Related authors

Diel variation in mercury stable isotope ratios records photoreduction of PM2.5-bound mercury
Qiang Huang, Jiubin Chen, Weilin Huang, John R. Reinfelder, Pingqing Fu, Shengliu Yuan, Zhongwei Wang, Wei Yuan, Hongming Cai, Hong Ren, Yele Sun, and Li He
Atmos. Chem. Phys., 19, 315–325,,, 2019
Short summary

Related subject area

Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript accepted for ACP
Short summary
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955,,, 2020
Short summary
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723,,, 2020
Short summary
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519,,, 2020
Short summary
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885,,, 2020
Short summary

Cited articles

Bergquist, B. A. and Blum, J. D.: Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417–420, 2007.
Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., and Xie, Z. Q.: Natural mercury isotope variation in coal deposits and organic soils, Environ. Sci. Technol., 42, 8303–8309, 2008.
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, 2007.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury isotopes in earth and environmental sciences, Annu. Revi. Earth Pl. Sc., 42, 249–269, 2014.
Buchachenko, A. L.: Mercury isotope effects in the environmental chemistry and biochemistry of mercury-containing compounds, Russ. Chem. Rev., 78, 319–328, 2009.
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
Final-revised paper