Articles | Volume 14, issue 19
https://doi.org/10.5194/acp-14-10517-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-10517-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign
E. Hammer
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
G. C. Roberts
CNRM/GAME – Meteo-France/CNRS, 42 av. Gaspard Coriolis, 31057 Toulouse, France
Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla CA 92093, USA
T. Elias
Hygeos, 165 Avenue de Bretagne, 59000 Lille, France
J. Hofer
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
now at: Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
C. R. Hoyle
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Swiss Federal Institute for Forest Snow and Landscape Research (WSL)-Institute for Snow and Avalanche Research (SLF), 7270 Davos, Switzerland
N. Bukowiecki
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
J.-C. Dupont
Institut Pierre-Simon Laplace, Université Versailles Saint Quentin, 78280 Guyancourt, France
F. Burnet
CNRM/GAME – Meteo-France/CNRS, 42 av. Gaspard Coriolis, 31057 Toulouse, France
U. Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
E. Weingartner
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
now at: Institute for Aerosol and Sensor Technology, University of Applied Sciences, 5210 Windisch, Switzerland
Related authors
E. Hammer, N. Bukowiecki, B. P. Luo, U. Lohmann, C. Marcolli, E. Weingartner, U. Baltensperger, and C. R. Hoyle
Atmos. Chem. Phys., 15, 10309–10323, https://doi.org/10.5194/acp-15-10309-2015, https://doi.org/10.5194/acp-15-10309-2015, 2015
Short summary
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
T. Elias, J.-C. Dupont, E. Hammer, C. R. Hoyle, M. Haeffelin, F. Burnet, and D. Jolivet
Atmos. Chem. Phys., 15, 6605–6623, https://doi.org/10.5194/acp-15-6605-2015, https://doi.org/10.5194/acp-15-6605-2015, 2015
E. Hammer, N. Bukowiecki, M. Gysel, Z. Jurányi, C. R. Hoyle, R. Vogt, U. Baltensperger, and E. Weingartner
Atmos. Chem. Phys., 14, 1123–1139, https://doi.org/10.5194/acp-14-1123-2014, https://doi.org/10.5194/acp-14-1123-2014, 2014
Lubna Dada, Benjamin T. Brem, Lidia-Marta Amarandi-Netedu, Martine Collaud Coen, Nikolaos Evangeliou, Christoph Hueglin, Nora Nowak, Robin Modini, Martin Steinbacher, and Martin Gysel-Beer
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-35, https://doi.org/10.5194/ar-2024-35, 2025
Preprint under review for AR
Short summary
Short summary
We investigated the sources of ultrafine particles (UFPs) in Payerne, Switzerland, highlighting the significant role of secondary processes in elevating UFP concentrations to levels comparable to urban areas. As the first study in rural midland Switzerland to analyze new particle formation events and secondary contributions, it offers key insights for air quality regulation in Switzerland and central Europe.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1344, https://doi.org/10.5194/egusphere-2024-1344, 2024
Short summary
Short summary
This study documents vertical profiles of liquid water content (LWC) in fogs from in situ measurements collected during the SOFOG3D field campaign in 2019–2020. The analysis of 140 vertical profiles reveals a reverse trend in LWC, maximum values at ground decreasing with height, during stable conditions in optically thin fogs, evolving towards quasi-adiabatic characteristics when fogs become thick. These results offer new perspectives for better constraining fog numerical simulations.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Alejandro Keller, Patrick Specht, Peter Steigmeier, and Ernest Weingartner
Aerosol Research, 1, 65–79, https://doi.org/10.5194/ar-1-65-2023, https://doi.org/10.5194/ar-1-65-2023, 2023
Short summary
Short summary
Ultra-fine airborne carbon particles affect climate and health, but measuring them poses many challenges. This paper presents an innovative device called FATCAT that enables unattended and continuous measurement of these particles over extended periods of time. We detail FATCAT's performance, demonstrate its compatibility with established methods and introduce the unique feature of fast thermograms, a novel approach to further understand real-world samples containing carbonaceous particles.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Alireza Moallemi, Robin L. Modini, Benjamin T. Brem, Barbara Bertozzi, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 16, 3653–3678, https://doi.org/10.5194/amt-16-3653-2023, https://doi.org/10.5194/amt-16-3653-2023, 2023
Short summary
Short summary
Polarimetric data, i.e., the angular and polarization dependence of light scattering by aerosols, contain ample information on optical and microphysical properties. Retrieval of these properties is a central approach in aerosol remote sensing. We present a description, calibration, validation, and a first application of a new benchtop polar nephelometer, which provides in situ polarimetric measurements of an aerosol. Such data facilitate agreement between retrieval results and independent data.
Emelie L. Graham, Cheng Wu, David M. Bell, Amelie Bertrand, Sophie L. Haslett, Urs Baltensperger, Imad El Haddad, Radovan Krejci, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 23, 7347–7362, https://doi.org/10.5194/acp-23-7347-2023, https://doi.org/10.5194/acp-23-7347-2023, 2023
Short summary
Short summary
The volatility of an aerosol particle is an important parameter for describing its atmospheric lifetime. We studied the volatility of secondary organic aerosols from nitrate-initiated oxidation of three biogenic precursors with experimental methods and model simulations. We saw higher volatility than for the corresponding ozone system, and our simulations produced variable results with different parameterizations which warrant a re-evaluation of the treatment of the nitrate functional group.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023, https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022, https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
Short summary
We present a method for positive matrix factorisation (PMF) analysis on a single dataset that includes measurements from both EESI-TOF and AMS in Zurich, Switzerland. For the first time, we resolved and quantified secondary organic aerosol (SOA) sources. Meanwhile, we also determined the retrieved EESI-TOF factor-dependent sensitivities. This method provides a framework for exploiting semi-quantitative, high-resolution instrumentation for quantitative source apportionment.
David M. Bell, Cheng Wu, Amelie Bertrand, Emelie Graham, Janne Schoonbaert, Stamatios Giannoukos, Urs Baltensperger, Andre S. H. Prevot, Ilona Riipinen, Imad El Haddad, and Claudia Mohr
Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, https://doi.org/10.5194/acp-22-13167-2022, 2022
Short summary
Short summary
A series of studies designed to investigate the evolution of organic aerosol were performed in an atmospheric simulation chamber, using a common oxidant found at night (NO3). The chemical composition steadily changed from its initial composition via different chemical reactions that were taking place inside of the aerosol particle. These results show that the composition of organic aerosol steadily changes during its lifetime in the atmosphere.
Alireza Moallemi, Rob L. Modini, Tatyana Lapyonok, Anton Lopatin, David Fuertes, Oleg Dubovik, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 15, 5619–5642, https://doi.org/10.5194/amt-15-5619-2022, https://doi.org/10.5194/amt-15-5619-2022, 2022
Short summary
Short summary
Aerosol properties (size distributions, refractive indices) can be retrieved from in situ, angularly resolved light scattering measurements performed with polar nephelometers. We apply an established framework to assess the aerosol property retrieval potential for different instrument configurations, target applications, and assumed prior knowledge. We also demonstrate how a reductive greedy algorithm can be used to determine the optimal placements of the angular sensors in a polar nephelometer.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022, https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022, https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Short summary
An aerosol-aware microphysics scheme is evaluated for fog cases in Namibia. AEROCLO-sA campaign observations are used to access and parameterise the model. The model cloud condensation nuclei activation is lower than the observations. The scheme is designed for clouds with updrafts, while fog typically forms in stable conditions. A pseudo updraft speed assigned to the lowest model levels helps achieve more realistic cloud droplet number concentration and size distribution in the model.
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys., 22, 9721–9745, https://doi.org/10.5194/acp-22-9721-2022, https://doi.org/10.5194/acp-22-9721-2022, 2022
Short summary
Short summary
We present the abundance and origin of cloud-relevant aerosol particles in the preindustral-like conditions of the Southern Ocean (SO) during austral summer. Cloud condensation nuclei (CCN) and ice-nucleating particles (INP) were measured during a circum-Antarctic scientific cruise with in situ instrumentation and offline filter measurements, respectively. Transport processes were found to play an equally important role as local sources for both the CCN and INP population of the SO.
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022, https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7557–7573, https://doi.org/10.5194/acp-22-7557-2022, https://doi.org/10.5194/acp-22-7557-2022, 2022
Short summary
Short summary
Microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in clouds. INPs are a tiny proportion of atmospheric aerosol, and their abundance is poorly constrained. We study how the concentration of INPs changes diurnally and seasonally at a mountaintop station in central Europe. Unsurprisingly, a diurnal cycle is only found when considering air masses that have had lower-altitude ground contact. The highest INP concentrations occur in spring.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Cyril Brunner, Benjamin T. Brem, Martine Collaud Coen, Franz Conen, Maxime Hervo, Stephan Henne, Martin Steinbacher, Martin Gysel-Beer, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 18029–18053, https://doi.org/10.5194/acp-21-18029-2021, https://doi.org/10.5194/acp-21-18029-2021, 2021
Short summary
Short summary
Special microscopic particles called ice-nucleating particles (INPs) are essential for ice crystals to form in the atmosphere. INPs are sparse and their atmospheric concentration and properties are not well understood. Mineral dust particles make up a significant fraction of INPs but how much remains unknown. Here, we address this knowledge gap by studying periods when mineral particles are present in large quantities at a mountaintop station in central Europe.
Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, https://doi.org/10.5194/amt-14-7693-2021, 2021
Short summary
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021, https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Short summary
A novel, advanced source apportionment technique was applied to a dataset measured in Magadino. Rolling positive matrix factorisation (PMF) allows for retrieving more realistic, time-dependent, and detailed information on organic aerosol sources. The strength of the rolling PMF mechanism is highlighted by comparing it with results derived from conventional seasonal PMF. Overall, this comprehensive interpretation of aerosol chemical speciation monitor data could be a role model for similar work.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Cheng Wu, David M. Bell, Emelie L. Graham, Sophie Haslett, Ilona Riipinen, Urs Baltensperger, Amelie Bertrand, Stamatios Giannoukos, Janne Schoonbaert, Imad El Haddad, Andre S. H. Prevot, Wei Huang, and Claudia Mohr
Atmos. Chem. Phys., 21, 14907–14925, https://doi.org/10.5194/acp-21-14907-2021, https://doi.org/10.5194/acp-21-14907-2021, 2021
Short summary
Short summary
Night-time reactions of biogenic volatile organic compounds and nitrate radicals can lead to the formation of secondary organic aerosol (BSOANO3). Here, we study the impacts of light exposure on the BSOANO3 from three biogenic precursors. Our results suggest that photolysis causes photodegradation of a substantial fraction of BSOANO3, changes the chemical composition and bulk volatility, and might be a potentially important loss pathway of BSOANO3 during the night-to-day transition.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Gloria Titos, María A. Burgos, Paul Zieger, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Ernest Weingartner, Bas Henzing, Krista Luoma, Colin O'Dowd, Alfred Wiedensohler, and Elisabeth Andrews
Atmos. Chem. Phys., 21, 13031–13050, https://doi.org/10.5194/acp-21-13031-2021, https://doi.org/10.5194/acp-21-13031-2021, 2021
Short summary
Short summary
This paper investigates the impact of water uptake on aerosol optical properties, in particular the aerosol light-scattering coefficient. Although in situ measurements are performed at low relative humidity (typically at
RH < 40 %), to address the climatic impact of aerosol particles it is necessary to take into account the effect that water uptake may have on the aerosol optical properties.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary
Short summary
This study provides a holistic approach to studying the spectrally resolved light absorption by atmospheric brown carbon (BrC) and black carbon using long time series of daily samples from filter-based measurements. The obtained results provide (1) a better understanding of the aerosol absorption profile and its dependence on BrC and on lensing from less absorbing coatings and (2) an estimation of the most important absorbers at typical European locations.
Yandong Tong, Veronika Pospisilova, Lu Qi, Jing Duan, Yifang Gu, Varun Kumar, Pragati Rai, Giulia Stefenelli, Liwei Wang, Ying Wang, Haobin Zhong, Urs Baltensperger, Junji Cao, Ru-Jin Huang, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 21, 9859–9886, https://doi.org/10.5194/acp-21-9859-2021, https://doi.org/10.5194/acp-21-9859-2021, 2021
Short summary
Short summary
We investigate SOA sources and formation processes by a field deployment of the EESI-TOF-MS and L-TOF AMS in Beijing in late autumn and early winter. Our study shows that the sources and processes giving rise to haze events in Beijing are variable and seasonally dependent: (1) in the heating season, SOA formation is driven by oxidation of aromatics from solid fuel combustion; and (2) under high-NOx and RH conditions, aqueous-phase chemistry can be a major contributor to SOA formation.
Dac-Loc Nguyen, Hendryk Czech, Simone M. Pieber, Jürgen Schnelle-Kreis, Martin Steinbacher, Jürgen Orasche, Stephan Henne, Olga B. Popovicheva, Gülcin Abbaszade, Guenter Engling, Nicolas Bukowiecki, Nhat-Anh Nguyen, Xuan-Anh Nguyen, and Ralf Zimmermann
Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, https://doi.org/10.5194/acp-21-8293-2021, 2021
Short summary
Short summary
Southeast Asia is well-known for emission-intense and recurring wildfires and after-harvest crop residue burning during the pre-monsoon season from February to April. We describe a biomass burning (BB) plume arriving at remote Pha Din meteorological station, outline its carbonaceous particulate matter (PM) constituents based on more than 50 target compounds and discuss possible BB sources. This study adds valuable information on chemical PM composition for a region with scarce data availability.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Short summary
We developed a box model with a volatility basis set to simulate organic aerosol (OA) from biomass burning and optimized the vapor-wall-loss-corrected OA yields with a genetic algorithm. The optimized parameterizations were then implemented in the air quality model CAMx v6.5. Comparisons with ambient measurements indicate that the vapor-wall-loss-corrected parameterization effectively improves the model performance in predicting OA, which reduced the mean fractional bias from −72.9 % to −1.6 %.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhance particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Francesco Canonaco, Anna Tobler, Gang Chen, Yulia Sosedova, Jay Gates Slowik, Carlo Bozzetti, Kaspar Rudolf Daellenbach, Imad El Haddad, Monica Crippa, Ru-Jin Huang, Markus Furger, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-2021, https://doi.org/10.5194/amt-14-923-2021, 2021
Short summary
Short summary
Long-term ambient aerosol mass spectrometric data were analyzed with a statistical model (PMF) to obtain source contributions and fingerprints. The new aspects of this paper involve time-dependent source fingerprints by a rolling technique and the replacement of the full visual inspection of each run by a user-defined set of criteria to monitor the quality of each of these runs more efficiently. More reliable sources will finally provide better instruments for political mitigation strategies.
Rob L. Modini, Joel C. Corbin, Benjamin T. Brem, Martin Irwin, Michele Bertò, Rosaria E. Pileci, Prodromos Fetfatzis, Kostas Eleftheriadis, Bas Henzing, Marcel M. Moerman, Fengshan Liu, Thomas Müller, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 819–851, https://doi.org/10.5194/amt-14-819-2021, https://doi.org/10.5194/amt-14-819-2021, 2021
Short summary
Short summary
Extinction-minus-scattering is an important method for measuring aerosol light absorption, but its application in the field presents a number of challenges. A recently developed instrument based on this method – the CAPS PMssa – has the potential to overcome some of these challenges. We present a compilation of theory, lab measurements, and field examples to characterize this instrument and show the conditions under which it can deliver reliable absorption measurements for atmospheric aerosols.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Bradley Visser, Jannis Röhrbein, Peter Steigmeier, Luka Drinovec, Griša Močnik, and Ernest Weingartner
Atmos. Meas. Tech., 13, 7097–7111, https://doi.org/10.5194/amt-13-7097-2020, https://doi.org/10.5194/amt-13-7097-2020, 2020
Short summary
Short summary
Here we report on the development of a novel single-beam photothermal interferometer and its use in the measurement of aerosol light absorption. We demonstrate how light-absorbing gases can be used to calibrate the instrument and how this absorption is automatically subtracted during normal operation. The performance of the instrument is compared to a standard filter-based instrument using a black carbon test aerosol. The 60 s detection limit is found to be less than 10 Mm-1.
Sebnem Aksoyoglu, Jianhui Jiang, Giancarlo Ciarelli, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020, https://doi.org/10.5194/acp-20-15665-2020, 2020
Short summary
Short summary
We investigated the role of ammonia in European air quality between 1990 and 2030 under varying land and ship emissions. If ship emissions will be regulated more strictly in the future, particulate nitrate will decrease in coastal areas in northern Europe, while sulfate aerosol will decrease in the Mediterranean region. We predict a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Anna K. Tobler, Alicja Skiba, Dongyu S. Wang, Philip Croteau, Katarzyna Styszko, Jarosław Nęcki, Urs Baltensperger, Jay G. Slowik, and André S. H. Prévôt
Atmos. Meas. Tech., 13, 5293–5301, https://doi.org/10.5194/amt-13-5293-2020, https://doi.org/10.5194/amt-13-5293-2020, 2020
Short summary
Short summary
Some quadrupole aerosol chemical speciation monitors (Q-ACSMs) have had issues with the quantification of particulate chloride, resulting in apparent negative chloride concentrations. We can show that this is due to the different behavior of Cl+ and HCl+, and we present a correction for the more accurate quantification of chloride. The correction can be applied to measurements in environments where the particulate chloride is dominated by NH4Cl.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Leighton A. Regayre, Julia Schmale, Jill S. Johnson, Christian Tatzelt, Andrea Baccarini, Silvia Henning, Masaru Yoshioka, Frank Stratmann, Martin Gysel-Beer, Daniel P. Grosvenor, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10063–10072, https://doi.org/10.5194/acp-20-10063-2020, https://doi.org/10.5194/acp-20-10063-2020, 2020
Short summary
Short summary
The amount of energy reflected back into space because of man-made particles is highly uncertain. Processes related to naturally occurring particles cause most of the uncertainty, but these processes are poorly constrained by present-day measurements. We show that measurements over the Southern Ocean, far from pollution sources, efficiently reduce climate model uncertainties. Our results pave the way to designing experiments and measurement campaigns that reduce this uncertainty even further.
Liwei Wang, Jay G. Slowik, Nidhi Tripathi, Deepika Bhattu, Pragati Rai, Varun Kumar, Pawan Vats, Rangu Satish, Urs Baltensperger, Dilip Ganguly, Neeraj Rastogi, Lokesh K. Sahu, Sachchida N. Tripathi, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 9753–9770, https://doi.org/10.5194/acp-20-9753-2020, https://doi.org/10.5194/acp-20-9753-2020, 2020
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Lu Qi, Alexander L. Vogel, Sepideh Esmaeilirad, Liming Cao, Jing Zheng, Jean-Luc Jaffrezo, Paola Fermo, Anne Kasper-Giebl, Kaspar R. Daellenbach, Mindong Chen, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 20, 7875–7893, https://doi.org/10.5194/acp-20-7875-2020, https://doi.org/10.5194/acp-20-7875-2020, 2020
Short summary
Short summary
We present the first application of this online and offline strategy using the new extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF), which achieves increased chemical specificity relative to other online techniques. Measurement and source apportionment of 1 year of filter samples collected in Zurich, Switzerland, show seasonal contributions from fresh and aged wood combustion in winter and biogenic emission-derived SOA in summer, as well as other sources.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Cyrielle Denjean, Thierry Bourrianne, Frederic Burnet, Marc Mallet, Nicolas Maury, Aurélie Colomb, Pamela Dominutti, Joel Brito, Régis Dupuy, Karine Sellegri, Alfons Schwarzenboeck, Cyrille Flamant, and Peter Knippertz
Atmos. Chem. Phys., 20, 4735–4756, https://doi.org/10.5194/acp-20-4735-2020, https://doi.org/10.5194/acp-20-4735-2020, 2020
Short summary
Short summary
This paper presents aircraft measurements of aerosol optical properties over southern West Africa. We show that aerosol optical properties in the boundary layer were dominated by a persistent biomass burning loading from the Southern Hemisphere. Biomass burning aerosols were more light absorbing that those previously measured in other areas (Amazonia, North America). Our study suggests that lens-coated black carbon particles were the dominant absorber for these biomass burning aerosols.
Pragati Rai, Markus Furger, Jay G. Slowik, Francesco Canonaco, Roman Fröhlich, Christoph Hüglin, María Cruz Minguillón, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, https://doi.org/10.5194/acp-20-1657-2020, 2020
Short summary
Short summary
A source apportionment study of hourly resolved elements in PM10 measured at a traffic-influenced site in Härkingen, Switzerland, using positive matrix factorization (PMF) and multilinear engine-2 (ME-2) offered resolution of robust and unambiguous factor profiles and contributions. We show that the rotational control available in ME-2 provides a means for treating extreme events such as fireworks within a PMF analysis.
Joel C. Corbin and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 15673–15690, https://doi.org/10.5194/acp-19-15673-2019, https://doi.org/10.5194/acp-19-15673-2019, 2019
Short summary
Short summary
We review the literature to refine the definition of "tar balls" (or tar particles). Then, using a marine-engine data set, we show that a standard SP2 can identify tar particles in two ways, as evaporating and non-incandescing (30 % of tar particles by number) or incandescing particles which scatter more light than soot at incandescence (70 % of tar particles by number). To our knowledge, no other technique can provide in situ, real-time evidence for the presence of tar particles in an aerosol.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
Giulia Stefenelli, Veronika Pospisilova, Felipe D. Lopez-Hilfiker, Kaspar R. Daellenbach, Christoph Hüglin, Yandong Tong, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 14825–14848, https://doi.org/10.5194/acp-19-14825-2019, https://doi.org/10.5194/acp-19-14825-2019, 2019
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
Giulia Stefenelli, Jianhui Jiang, Amelie Bertrand, Emily A. Bruns, Simone M. Pieber, Urs Baltensperger, Nicolas Marchand, Sebnem Aksoyoglu, André S. H. Prévôt, Jay G. Slowik, and Imad El Haddad
Atmos. Chem. Phys., 19, 11461–11484, https://doi.org/10.5194/acp-19-11461-2019, https://doi.org/10.5194/acp-19-11461-2019, 2019
Short summary
Short summary
Box model simulations, based on the volatility basis set approach, of smog chamber wood combustion experiments conducted at different temperatures (−10 °C, 2 °C, 15 °C), emission loads, combustion conditions (flaming and smoldering) and residential stoves fabricated in the last 2 decades. Novel parameterization methods based on a genetic algorithm approach allowed estimation of precursor class contributions to SOA and evaluation of the effect of emission variability on SOA yield predictions.
Felipe D. Lopez-Hilfiker, Veronika Pospisilova, Wei Huang, Markus Kalberer, Claudia Mohr, Giulia Stefenelli, Joel A. Thornton, Urs Baltensperger, Andre S. H. Prevot, and Jay G. Slowik
Atmos. Meas. Tech., 12, 4867–4886, https://doi.org/10.5194/amt-12-4867-2019, https://doi.org/10.5194/amt-12-4867-2019, 2019
Short summary
Short summary
We present a novel, field-deployable extractive electrospray time-of-flight mass spectrometer (EESI-TOF), which provides real-time, near-molecular measurements of organic aerosol at atmospherically relevant concentrations, addressing a critical gap in existing measurement capabilities. Successful deployments of the EESI-TOF for laboratory measurements, ground-based ambient sampling, and aboard a research aircraft highlight the versatility and potential of the EESI-TOF system.
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Jessie M. Creamean, Claudia Mignani, Nicolas Bukowiecki, and Franz Conen
Atmos. Chem. Phys., 19, 8123–8140, https://doi.org/10.5194/acp-19-8123-2019, https://doi.org/10.5194/acp-19-8123-2019, 2019
Short summary
Short summary
Aerosols that serve as seeds for cloud ice formation are important to study because they impact cloud radiative properties, lifetime, and precipitation formation. We present an investigation of ice-nucleating particles (INPs) from aerosol, rime, and snow samples collected in clear and cloudy conditions during winter storms in the Swiss Alsp. INPs were more abundant and effective when storms originated from the south. We use spectral characteristics to investigate warm versus cold mode INPs.
Lu Qi, Mindong Chen, Giulia Stefenelli, Veronika Pospisilova, Yandong Tong, Amelie Bertrand, Christoph Hueglin, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 8037–8062, https://doi.org/10.5194/acp-19-8037-2019, https://doi.org/10.5194/acp-19-8037-2019, 2019
Short summary
Short summary
Current understanding of OA sources is limited by the chemical resolution of existing real-time measurement technology. We describe the first wintertime deployment of a novel extractive electrospray ionization time-of-flight mass spectrometer, which provides near-molecular OA measurements with high time resolution. We show that biomass combustion strongly influences winter OA. Via factor analysis, aging-dependent signatures and time contributions of biomass-combustion-derived OA are resolved.
Athanasia Vlachou, Anna Tobler, Houssni Lamkaddam, Francesco Canonaco, Kaspar R. Daellenbach, Jean-Luc Jaffrezo, María Cruz Minguillón, Marek Maasikmets, Erik Teinemaa, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 7279–7295, https://doi.org/10.5194/acp-19-7279-2019, https://doi.org/10.5194/acp-19-7279-2019, 2019
Short summary
Short summary
The resolution of rotational ambiguity in positive matrix factorization (PMF) models is a major challenge. Here, we developed a method based on bootstrapping and correlations to extract environmentally meaningful solutions from PMF analysis based on offline aerosol mass spectrometry data. The method has been tested on a dataset that covers 1 full year of filter samples collected at three different sites in Estonia.
Kaspar R. Daellenbach, Ivan Kourtchev, Alexander L. Vogel, Emily A. Bruns, Jianhui Jiang, Tuukka Petäjä, Jean-Luc Jaffrezo, Sebnem Aksoyoglu, Markus Kalberer, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, https://doi.org/10.5194/acp-19-5973-2019, 2019
Short summary
Short summary
Here we present the molecular composition of the organic aerosol (OA) at an urban site in Central Europe (Zurich, Switzerland) and compare it to smog chamber wood smoke and ambient biogenic secondary OA (SOA) (Orbitrap analyses). Accordingly, we are able to explain the strong seasonality of the molecular composition by aged wood smoke and biogenic SOA during winter and summer. Our results could also explain the predominance of non-fossil organic carbon at European locations throughout the year.
Marie Mazoyer, Frédéric Burnet, Cyrielle Denjean, Gregory C. Roberts, Martial Haeffelin, Jean-Charles Dupont, and Thierry Elias
Atmos. Chem. Phys., 19, 4323–4344, https://doi.org/10.5194/acp-19-4323-2019, https://doi.org/10.5194/acp-19-4323-2019, 2019
Short summary
Short summary
In situ microphysical measurements collected during 23 fog events at SIRTA (south of Paris) are examined here. An original iterative method based on the κ-Köhler theory has been used to compute statistics of their activation properties. Useful information is provided to constrain and validate numerical simulations. The paper demonstrates that supersaturation encountered in these fogs is too low to observe a correlation between concentrations of aerosols > 200 nm and droplet concentrations.
Ghislain Motos, Julia Schmale, Joel C. Corbin, Rob. L. Modini, Nadine Karlen, Michele Bertò, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 3833–3855, https://doi.org/10.5194/acp-19-3833-2019, https://doi.org/10.5194/acp-19-3833-2019, 2019
Short summary
Short summary
Atmospheric black carbon (BC) particles are strong light absorbers that contribute to global warming. In situ cloud measurements performed at a high-altitude site showed that cloud supersaturation mainly drives the activation of BC to cloud droplets. It was further shown how BC particle size and mixing state modulate this nucleation scavenging in agreement with simplified theoretical predictions. These findings can inform model simulations towards a better representation of the BC life cycle.
Jianhui Jiang, Sebnem Aksoyoglu, Giancarlo Ciarelli, Emmanouil Oikonomakis, Imad El-Haddad, Francesco Canonaco, Colin O'Dowd, Jurgita Ovadnevaite, María Cruz Minguillón, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, https://doi.org/10.5194/acp-19-3747-2019, 2019
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from vegetation are essential inputs for air quality models but their uncertainties are very high. In this study we show the importance of BVOC emissions for modelled ozone and aerosol concentrations in Europe. Using different biogenic emissions from MEGAN and PSI models significantly affected organic aerosols (smaller effect on ozone), indicating the importance of harmonising the BVOC emissions in the model inter-comparison studies.
Ghislain Motos, Julia Schmale, Joel C. Corbin, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 2183–2207, https://doi.org/10.5194/acp-19-2183-2019, https://doi.org/10.5194/acp-19-2183-2019, 2019
Short summary
Short summary
Clouds form by condensation of water vapour on aerosol particles. We showed that black carbon, a subset of particles responsible for a climate warming due to their strong light absorption and known to be insoluble in water, were able to form droplets when the humidity of the air is very slightly over 100 %. This is made possible by their acquisition of a
coatingmade of hydrophilic material during atmospheric aging. The predictability of this process using theory was successfully tested.
Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Močnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, https://doi.org/10.5194/acp-18-17843-2018, 2018
Short summary
Short summary
It is clear that considerable uncertainties still exist in understanding the magnitude of aerosol absorption on a global scale and its contribution to global warming. This manuscript provides a comprehensive assessment of the optical absorption by organic aerosols (brown carbon) from residential wood combustion as a function of atmospheric aging.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Simone M. Pieber, Nivedita K. Kumar, Felix Klein, Pierre Comte, Deepika Bhattu, Josef Dommen, Emily A. Bruns, Doǧuşhan Kılıç, Imad El Haddad, Alejandro Keller, Jan Czerwinski, Norbert Heeb, Urs Baltensperger, Jay G. Slowik, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 9929–9954, https://doi.org/10.5194/acp-18-9929-2018, https://doi.org/10.5194/acp-18-9929-2018, 2018
Short summary
Short summary
We studied primary emissions and secondary organic aerosol (SOA) from gasoline direct injection (GDI) vehicles including GDIs retrofitted with gasoline particle filters (GPF). GPF retrofitting significantly decreased the primary particulate matter, particularly through removal of refractory black carbon and, to a lesser extent, of non-refractory organic particulates. SOA experiments were conducted in a batch and flow reactor. GPF retrofitting did not significantly affect precursors or yields.
Emmanouil Oikonomakis, Sebnem Aksoyoglu, Martin Wild, Giancarlo Ciarelli, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 18, 9741–9765, https://doi.org/10.5194/acp-18-9741-2018, https://doi.org/10.5194/acp-18-9741-2018, 2018
Short summary
Short summary
We report a model sensitivity study on the impact of aerosol–radiation interaction (ARI) changes in Europe between 1990 and 2010 on summer surface ozone via effects on photolysis rates and biogenic emissions. The overall impact of ARI changes on ozone was relatively small when compared to the total ozone concentrations, but it was more important when compared to the order of magnitude of ozone trends, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Amelie Bertrand, Giulia Stefenelli, Coty N. Jen, Simone M. Pieber, Emily A. Bruns, Haiyan Ni, Brice Temime-Roussel, Jay G. Slowik, Allen H. Goldstein, Imad El Haddad, Urs Baltensperger, André S. H. Prévôt, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 18, 7607–7624, https://doi.org/10.5194/acp-18-7607-2018, https://doi.org/10.5194/acp-18-7607-2018, 2018
Short summary
Short summary
A thermal desorption aerosol gas chromatograph coupled to an aerosol mass spectrometer (TAG–AMS) is connected to an atmospheric chamber. The setup serves the quantitative study of the impact of combustion conditions and atmospheric aging on the chemical fingerprint at the molecular level of biomass burning organic aerosol.
Doğuşhan Kılıç, Imad El Haddad, Benjamin T. Brem, Emily Bruns, Carlo Bozetti, Joel Corbin, Lukas Durdina, Ru-Jin Huang, Jianhui Jiang, Felix Klein, Avi Lavi, Simone M. Pieber, Theo Rindlisbacher, Yinon Rudich, Jay G. Slowik, Jing Wang, Urs Baltensperger, and Andre S. H. Prévôt
Atmos. Chem. Phys., 18, 7379–7391, https://doi.org/10.5194/acp-18-7379-2018, https://doi.org/10.5194/acp-18-7379-2018, 2018
Short summary
Short summary
We study primary emissions and secondary aerosol (SA) from an aircraft turbofan. By monitoring the chemical composition of both gaseous and particulate emissions at different engine loads, we explained SA formed in an oxidation flow reactor (PAM) by the oxidation of gaseous species. At idle, more than 90 % of the secondary particle mass was organic and could be explained by the oxidation of gaseous aromatic species, while at an approximated cruise load sulfates comprised 85 % of the total SA.
Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen
Atmos. Chem. Phys., 18, 6985–7000, https://doi.org/10.5194/acp-18-6985-2018, https://doi.org/10.5194/acp-18-6985-2018, 2018
Short summary
Short summary
We thoroughly studied the reactive oxygen species (ROS) generation potential of particulate wood combustion emissions, from different combustion technologies, fuel types, operation methods, combustion regimes and phases. ROS from automatically operated combustion devices under optimal conditions were much lower than those from manually operated appliances. We examined the impact of atmospheric aging on ROS content in SOA and determined the controlling parameters, by using an online ROS analyzer.
Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Benjamin Chazeau, Gary A. Salazar, Soenke Szidat, Jean-Luc Jaffrezo, Christoph Hueglin, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, https://doi.org/10.5194/acp-18-6187-2018, 2018
Short summary
Short summary
Carbonaceous aerosols are related to adverse human health effects, which depend on the aerosol chemical composition and size. Here, we combine aerosol mass spectrometry and radiocarbon measurements of size-resolved samples collected over a long term to identify the origins of primary and secondary carbonaceous aerosols in the fine and coarse modes.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Kaspar R. Daellenbach, Imad El-Haddad, Lassi Karvonen, Athanasia Vlachou, Joel C. Corbin, Jay G. Slowik, Maarten F. Heringa, Emily A. Bruns, Samuel M. Luedin, Jean-Luc Jaffrezo, Sönke Szidat, Andrea Piazzalunga, Raquel Gonzalez, Paola Fermo, Valentin Pflueger, Guido Vogel, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 2155–2174, https://doi.org/10.5194/acp-18-2155-2018, https://doi.org/10.5194/acp-18-2155-2018, 2018
Short summary
Short summary
A novel offline LDI-MS method was developed to analyse particulate matter (PM) collected at multiple sites in central Europe during the entire year of 2013. PM sources were identified by positive matrix factorization. Wood burning emissions were separated according to the burning conditions; inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. Moreover, primary tailpipe exhaust was distinguished from aged/secondary traffic emissions.
Emmanouil Oikonomakis, Sebnem Aksoyoglu, Giancarlo Ciarelli, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 18, 2175–2198, https://doi.org/10.5194/acp-18-2175-2018, https://doi.org/10.5194/acp-18-2175-2018, 2018
Short summary
Short summary
We report a modeling study investigating the uncertainties in ozone production in Europe. Using various methods for different emission and meteorological scenarios, we searched for the possible reasons for underestimation of high ozone levels in Europe by models. Our results suggest that emissions, especially NOx, might be too low in the European inventories. Improvement of the modeled ozone production will contribute to more consistent and effective ozone mitigation strategies for the future.
Ugo Molteni, Federico Bianchi, Felix Klein, Imad El Haddad, Carla Frege, Michel J. Rossi, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, https://doi.org/10.5194/acp-18-1909-2018, 2018
Short summary
Short summary
Anthropogenic volatile organic compounds often dominate the urban atmosphere and consist to a large degree of aromatics. These compounds are already known as important precursors for the formation of secondary organic aerosol. This study shows how the oxidation of aromatics with an OH radical leads to subsequent autoxidation chain reactions forming highly oxygenated molecules. We hypothesize that these may contribute substantially to new particle formation events detected in urban areas.
Joel Brito, Evelyn Freney, Pamela Dominutti, Agnes Borbon, Sophie L. Haslett, Anneke M. Batenburg, Aurelie Colomb, Regis Dupuy, Cyrielle Denjean, Frederic Burnet, Thierry Bourriane, Adrien Deroubaix, Karine Sellegri, Stephan Borrmann, Hugh Coe, Cyrille Flamant, Peter Knippertz, and Alfons Schwarzenboeck
Atmos. Chem. Phys., 18, 757–772, https://doi.org/10.5194/acp-18-757-2018, https://doi.org/10.5194/acp-18-757-2018, 2018
Short summary
Short summary
This work focuses on sources of submicron aerosol particles over southern West Africa (SWA). Results have shown that isoprene, a gas-phase compound of biogenic origin, is responsible for roughly 25 % of the organic aerosol (OA) loading, under most background or urban plumes alike. This fraction represents a lower estimate from the biogenic contribution in this fairly polluted region. This work sheds light upon the role of anthropogenic and biogenic emissions on the pollution burden over SWA.
Jun Zhou, Emily A. Bruns, Peter Zotter, Giulia Stefenelli, André S. H. Prévôt, Urs Baltensperger, Imad El-Haddad, and Josef Dommen
Atmos. Meas. Tech., 11, 65–80, https://doi.org/10.5194/amt-11-65-2018, https://doi.org/10.5194/amt-11-65-2018, 2018
Short summary
Short summary
Reactive oxygen species (ROS) in the particle phase may induce oxidative stress in the human lungs upon inhalation. Here we present and thoroughly characterize a modified online and offline ROS analyzer. Selected model organic compounds were tested and potential interferences from gas-phase and matrix effects of particulate constituents were evaluated. ROS measurements of filter samples revealed the rapid decay of a substantial ROS fraction, supporting the application of online measurements.
Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, António Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, António Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga Garmash, Marc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kürten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, António Tomé, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, https://doi.org/10.5194/acp-18-65-2018, 2018
Short summary
Short summary
It was recently shown that biogenic highly oxygenated molecules (HOMs) form particles in the absence of sulfuric acid and ions enhance the nucleation rate. Here we compare the molecular composition of positive and negative HOM clusters at 25, 5 and −25 °C. At lower temperatures the HOM average oxygen-to-carbon ratio decreases indicating a reduction in the rate of autoxidation due to rather high activation energy. The experimental findings are supported by quantum chemical calculations.
Larissa Lacher, Ulrike Lohmann, Yvonne Boose, Assaf Zipori, Erik Herrmann, Nicolas Bukowiecki, Martin Steinbacher, and Zamin A. Kanji
Atmos. Chem. Phys., 17, 15199–15224, https://doi.org/10.5194/acp-17-15199-2017, https://doi.org/10.5194/acp-17-15199-2017, 2017
Short summary
Short summary
We characterize the new Horizontal Ice Nucleation Chamber HINC to measure ambient ice nucleating particle concentrations at mixed‐phase cloud conditions. Results from winter measurements at the High Altitude Research Station Jungfraujoch compare well to previous measurements. We find increased ice nucleating particle concentrations during the influence of Saharan dust events and marine events, which highlights the importance of these species on ice nucleation in the free troposphere.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Allison N. Schwier, Karine Sellegri, Sébastien Mas, Bruno Charrière, Jorge Pey, Clémence Rose, Brice Temime-Roussel, Jean-Luc Jaffrezo, David Parin, David Picard, Mickael Ribeiro, Greg Roberts, Richard Sempéré, Nicolas Marchand, and Barbara D'Anna
Atmos. Chem. Phys., 17, 14645–14660, https://doi.org/10.5194/acp-17-14645-2017, https://doi.org/10.5194/acp-17-14645-2017, 2017
Short summary
Short summary
In the present paper, we quantify sea-to-air emission fluxes of aerosol to the atmosphere and characterize their physical and chemical properties as a function of the seawater biochemical and physical properties. Fluxes are evaluated with an original approach, a "lab in the field" experiment that preserves the seawater and atmospheric complexity while isolating air-to-sea exchanges from their surroundings. We show different features of the aerosol emission fluxes compared to previous findings.
Kaspar R. Daellenbach, Giulia Stefenelli, Carlo Bozzetti, Athanasia Vlachou, Paola Fermo, Raquel Gonzalez, Andrea Piazzalunga, Cristina Colombi, Francesco Canonaco, Christoph Hueglin, Anne Kasper-Giebl, Jean-Luc Jaffrezo, Federico Bianchi, Jay G. Slowik, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 13265–13282, https://doi.org/10.5194/acp-17-13265-2017, https://doi.org/10.5194/acp-17-13265-2017, 2017
Short summary
Short summary
We present offline AMS analyses for the organic aerosol (OA) in PM10 at nine sites in central Europe for 2013. Primary OA is separated into traffic, cooking, and wood-burning components. A factor explaining sulfur-containing ions, with an event-driven time series, is also separated. We observe enhanced production of secondary OA (SOA) in summer, following biogenic emissions with temperature. In winter a SOA component is dominant, which correlates with anthropogenic inorganic species.
Kevin J. Sanchez, Gregory C. Roberts, Radiance Calmer, Keri Nicoll, Eyal Hashimshoni, Daniel Rosenfeld, Jurgita Ovadnevaite, Jana Preissler, Darius Ceburnis, Colin O'Dowd, and Lynn M. Russell
Atmos. Chem. Phys., 17, 9797–9814, https://doi.org/10.5194/acp-17-9797-2017, https://doi.org/10.5194/acp-17-9797-2017, 2017
Short summary
Short summary
Unmanned aerial vehicles are equipped with meteorological sensors to measure cloud properties. The measurements are used to calculate the amount of solar radiation reflected by the clouds and compared to simulation results. The uncertainties related to radiative forcing in the simulations are from the lack of mixing in the boundary layer and mixing of dry air into the cloud top. Conservative variables are used to calculate the amount of air mixed into cloud top to minimize these uncertainties.
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
Georgios Tsagkogeorgas, Pontus Roldin, Jonathan Duplissy, Linda Rondo, Jasmin Tröstl, Jay G. Slowik, Sebastian Ehrhart, Alessandro Franchin, Andreas Kürten, Antonio Amorim, Federico Bianchi, Jasper Kirkby, Tuukka Petäjä, Urs Baltensperger, Michael Boy, Joachim Curtius, Richard C. Flagan, Markku Kulmala, Neil M. Donahue, and Frank Stratmann
Atmos. Chem. Phys., 17, 8923–8938, https://doi.org/10.5194/acp-17-8923-2017, https://doi.org/10.5194/acp-17-8923-2017, 2017
Short summary
Short summary
The H2SO4 vapour pressure plays key role in Earth's and Venus' atmospheres. In regions where RH is low and stabilising bases are scarce, H2SO4 can evaporate from particles; however the H2SO4 vapour pressure at low RH is uncertain. To address this, we measured H2SO4 evaporation versus T and RH in the CLOUD chamber and constrained the equilibrium constants for dissociation and dehydration of H2SO4. This study is important for nucleation, particle growth and H2SO4 formation occurring in atmosphere.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
Marine Claeys, Greg Roberts, Marc Mallet, Jovanna Arndt, Karine Sellegri, Jean Sciare, John Wenger, and Bastien Sauvage
Atmos. Chem. Phys., 17, 7891–7915, https://doi.org/10.5194/acp-17-7891-2017, https://doi.org/10.5194/acp-17-7891-2017, 2017
Short summary
Short summary
Over a period of 5 days (summer 2013), the mass concentration of primary marine aerosols was dominant compared to other aerosols measured at a ground-based measuring site on Corsica. The characteristics of primary marine aerosols such as their size distribution, their optical properties and their direct radiative effect were studied as a function of their ageing and region of emission. These characteristics were compared to two other periods dominated by different aerosol regimes.
Sebnem Aksoyoglu, Giancarlo Ciarelli, Imad El-Haddad, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7757–7773, https://doi.org/10.5194/acp-17-7757-2017, https://doi.org/10.5194/acp-17-7757-2017, 2017
Short summary
Short summary
Sources of inorganic aerosols in Europe were investigated using a regional air quality model. Results of this study suggested that biogenic volatile organic coumpounds emitted from vegetation had a significant effect on inorganic aerosols, especially on ammonium nitrate concentrations. Sensitivity analyses showed that it is mainly terpene reactions with nitrate radical at night that lead to a decrease in ammonium nitrate.
Giancarlo Ciarelli, Imad El Haddad, Emily Bruns, Sebnem Aksoyoglu, Ottmar Möhler, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 10, 2303–2320, https://doi.org/10.5194/gmd-10-2303-2017, https://doi.org/10.5194/gmd-10-2303-2017, 2017
Short summary
Short summary
In Europe, residential wood-burning emissions constitute one of the main anthropogenic sources of air pollution. Novel wood-burning experiments performed in a state-of-the-art smog chamber provide valuable information on the chemical properties of wood-burning emissions and the transformation in the atmosphere. In this study, these new data were used in a box model to constrain a parameterization suitable for predicting the contribution of wood burning to air pollution with large-scale models.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Imad El Haddad, Emily A. Bruns, Monica Crippa, Laurent Poulain, Mikko Äijälä, Samara Carbone, Evelyn Freney, Colin O'Dowd, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, https://doi.org/10.5194/acp-17-7653-2017, 2017
Short summary
Short summary
Organic aerosol (OA) comprises the main fraction of fine particulate matter (PM1). Using a new VBS parameterization, we performed model-based source apportionment studies to assess the importance of different emission sources to the total OA loads in Europe during winter periods. Our results indicate that residential wood burning emissions represent the major source of OA, followed by non-residential emission sources (i.e. traffic and industries).
Jovanna Arndt, Jean Sciare, Marc Mallet, Greg C. Roberts, Nicolas Marchand, Karine Sartelet, Karine Sellegri, François Dulac, Robert M. Healy, and John C. Wenger
Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, https://doi.org/10.5194/acp-17-6975-2017, 2017
Short summary
Short summary
The chemical composition of individual PM2.5 particles was measured at a background site on Corsica in the Mediterranean to determine the contribution of different sources to background aerosol in the region. Most of the particles were from fossil fuel combustion and biomass burning, transported to the site from France, Italy and eastern Europe, and also accumulated other species en route. This work shows that largest impact on air quality in the Mediterranean is from anthropogenic emissions.
Markus Furger, María Cruz Minguillón, Varun Yadav, Jay G. Slowik, Christoph Hüglin, Roman Fröhlich, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017, https://doi.org/10.5194/amt-10-2061-2017, 2017
Short summary
Short summary
An Xact 625 Ambient Metals Monitor was tested during a 3-week summer field campaign at a rural, traffic-influenced site in Switzerland. The objective was to characterize the operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The results demonstrate significant advantages compared to traditional elemental analysis methods, with some desirable improvements.
Pierre Tulet, Andréa Di Muro, Aurélie Colomb, Cyrielle Denjean, Valentin Duflot, Santiago Arellano, Brice Foucart, Jérome Brioude, Karine Sellegri, Aline Peltier, Alessandro Aiuppa, Christelle Barthe, Chatrapatty Bhugwant, Soline Bielli, Patrice Boissier, Guillaume Boudoire, Thierry Bourrianne, Christophe Brunet, Fréderic Burnet, Jean-Pierre Cammas, Franck Gabarrot, Bo Galle, Gaetano Giudice, Christian Guadagno, Fréderic Jeamblu, Philippe Kowalski, Jimmy Leclair de Bellevue, Nicolas Marquestaut, Dominique Mékies, Jean-Marc Metzger, Joris Pianezze, Thierry Portafaix, Jean Sciare, Arnaud Tournigand, and Nicolas Villeneuve
Atmos. Chem. Phys., 17, 5355–5378, https://doi.org/10.5194/acp-17-5355-2017, https://doi.org/10.5194/acp-17-5355-2017, 2017
Short summary
Short summary
The STRAP campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements were conducted at the local (near the vent) and regional scales around the island. The STRAP 2015 campaign gave a unique set of multi-disciplinary data that can now be used by modellers to improve the numerical parameterisations of the physical and chemical evolution of the volcanic plumes.
Lisa Stirnweis, Claudia Marcolli, Josef Dommen, Peter Barmet, Carla Frege, Stephen M. Platt, Emily A. Bruns, Manuel Krapf, Jay G. Slowik, Robert Wolf, Andre S. H. Prévôt, Urs Baltensperger, and Imad El-Haddad
Atmos. Chem. Phys., 17, 5035–5061, https://doi.org/10.5194/acp-17-5035-2017, https://doi.org/10.5194/acp-17-5035-2017, 2017
Peter Zotter, Hanna Herich, Martin Gysel, Imad El-Haddad, Yanlin Zhang, Griša Močnik, Christoph Hüglin, Urs Baltensperger, Sönke Szidat, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, https://doi.org/10.5194/acp-17-4229-2017, 2017
Short summary
Short summary
Most studies use a single Ångström exponent for wood burning (αWB) and traffic (αTR) emissions in the Aethalometer model, used for source apportionment of black carbon, derived from previous work. However, accurate determination of the α values is currently lacking. Comparing radiocarbon measurements (14C) with the Aehtalometer model, good agreement was found, indicating that the Aethalometer model reproduces reasonably well the 14C results using our best estimate of a single αWB and αTR.
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017, https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Short summary
We present measurements of the chemical composition of atmospheric ions at high altitude (3450 m a.s.l.) during a 9-month campaign. We detected remarkably high correlation between methanesulfonic acid (MSA) and SO5−. Halogenated species were also detected frequently at this continental location. New-particle formation events occurred via the condensation of highly oxygenated molecules (HOMs) at very low sulfuric acid concentration or, less frequently, due to ammonia–sulfuric acid clusters.
Emily A. Bruns, Jay G. Slowik, Imad El Haddad, Dogushan Kilic, Felix Klein, Josef Dommen, Brice Temime-Roussel, Nicolas Marchand, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, https://doi.org/10.5194/acp-17-705-2017, 2017
Short summary
Short summary
We characterize primary and aged gaseous emissions from residential wood combustion using proton transfer reaction time-of-flight mass spectrometry. This approach allows for improved characterization, particularly of oxygenated gases, which are a considerable fraction of the total gaseous mass emitted during residential wood combustion. This study is the first thorough characterization of organic gases from this source and provides a benchmark for future studies.
Carlo Bozzetti, Yuliya Sosedova, Mao Xiao, Kaspar R. Daellenbach, Vidmantas Ulevicius, Vadimas Dudoitis, Genrik Mordas, Steigvilė Byčenkienė, Kristina Plauškaitė, Athanasia Vlachou, Benjamin Golly, Benjamin Chazeau, Jean-Luc Besombes, Urs Baltensperger, Jean-Luc Jaffrezo, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 117–141, https://doi.org/10.5194/acp-17-117-2017, https://doi.org/10.5194/acp-17-117-2017, 2017
Short summary
Short summary
In this study we present the offline-AMS source apportionment of the submicron organic aerosol (OA) sources conducted over 1 year at three locations in the south east Baltic region, which has so far received small attention. Offline-AMS enabled broadening the AMS spatial and temporal coverage, and provided a full characterization of the OA sources. Source apportionment results revealed that biomass burning and biogenic secondary emissions were the major OA sources during winter and summer.
Heike Wex, Katrin Dieckmann, Greg C. Roberts, Thomas Conrath, Miguel A. Izaguirre, Susan Hartmann, Paul Herenz, Michael Schäfer, Florian Ditas, Tina Schmeissner, Silvia Henning, Birgit Wehner, Holger Siebert, and Frank Stratmann
Atmos. Chem. Phys., 16, 14107–14130, https://doi.org/10.5194/acp-16-14107-2016, https://doi.org/10.5194/acp-16-14107-2016, 2016
Short summary
Short summary
Aerosol arriving in the eastern Caribbean after passing the Atlantic is characterized, based on ground-based and airborne measurements. We describe the repetitive occurrence of three different types of air masses and relate them to their origin from either Africa or the Atlantic and also draw conclusions about the particle composition. The length of the data series is unprecedented. By a comparison with other studies, we also suggest that the organic fraction in the aerosol depends on season.
Lukas Kaufmann, Claudia Marcolli, Julian Hofer, Valeria Pinti, Christopher R. Hoyle, and Thomas Peter
Atmos. Chem. Phys., 16, 11177–11206, https://doi.org/10.5194/acp-16-11177-2016, https://doi.org/10.5194/acp-16-11177-2016, 2016
Short summary
Short summary
We investigated dust samples from dust source regions all over the globe with respect to their ice nucleation activity and their mineralogical composition. Stones of reference minerals were milled and investigated the same way as the natural dust samples. We found that the mineralogical composition is a major determinant of ice nucleation ability. Natural samples consist of mixtures of minerals with remarkably similar ice nucleation ability.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 3673–3686, https://doi.org/10.5194/amt-9-3673-2016, https://doi.org/10.5194/amt-9-3673-2016, 2016
Short summary
Short summary
We illustrate the first Light Optical Aerosol Counter (LOAC) airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons: tethered balloons deployed in urban environments, pressurized balloons drifting in the lower troposphere over the western Mediterranean during the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), and meteorological sounding balloons launched in the western Mediterranean region and in the south-west of France.
Bernadette Rosati, Martin Gysel, Florian Rubach, Thomas F. Mentel, Brigitta Goger, Laurent Poulain, Patrick Schlag, Pasi Miettinen, Aki Pajunoja, Annele Virtanen, Henk Klein Baltink, J. S. Bas Henzing, Johannes Größ, Gian Paolo Gobbi, Alfred Wiedensohler, Astrid Kiendler-Scharr, Stefano Decesari, Maria Cristina Facchini, Ernest Weingartner, and Urs Baltensperger
Atmos. Chem. Phys., 16, 7295–7315, https://doi.org/10.5194/acp-16-7295-2016, https://doi.org/10.5194/acp-16-7295-2016, 2016
Short summary
Short summary
This study presents PEGASOS project data from field campaigns in the Po Valley, Italy and the Netherlands. Vertical profiles of aerosol hygroscopicity and chemical composition were investigated with airborne measurements on board a Zeppelin NT airship. A special focus was on the evolution of different mixing layers within the PBL as a function of daytime. A closure study showed that variations in aerosol hygroscopicity can well be explained by the variations in chemical composition.
Miriam Elser, Carlo Bozzetti, Imad El-Haddad, Marek Maasikmets, Erik Teinemaa, Rene Richter, Robert Wolf, Jay G. Slowik, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 7117–7134, https://doi.org/10.5194/acp-16-7117-2016, https://doi.org/10.5194/acp-16-7117-2016, 2016
Short summary
Short summary
This work presents the first detailed in-situ measurements of major air pollutants (including NR-PM2.5, eBC, and trace gases) in the two biggest cities in Estonia. The sources of organic aerosols were investigated by means of positive matrix factorization. Highly time-resolved mobile measurements allowed for the identification of source areas and the determination of regional background concentrations as well as urban increments of the individual components.
M. Mazoyer, F. Burnet, G. C. Roberts, M. Haeffelin, J.-C Dupont, and T. Elias
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-103, https://doi.org/10.5194/acp-2016-103, 2016
Preprint withdrawn
Short summary
Short summary
Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the SIRTA observatory in the suburb of Paris. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics
through an original method. We conclude that the actual supersaturations reached during these fog episodes are too low and no simultaneous increase of aerosols (D > 200 nm) and droplet concentrations can be observed.
Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann
Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, https://doi.org/10.5194/acp-16-6495-2016, 2016
Short summary
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 1721–1742, https://doi.org/10.5194/amt-9-1721-2016, https://doi.org/10.5194/amt-9-1721-2016, 2016
Short summary
Short summary
LOAC is a light aerosols counter for performing measurements at the surface and under all kinds of atmospheric balloons. LOAC performs observations at two scattering angles. The first one at 12° is insensitive to the refractive index of the particles; the second one at 60° is strongly sensitive to the refractive index. By combining the measurements, it is possible to retrieve the size distribution between 0.2 and 100 micrometeres and to estimate the nature of the dominant particles.
Bernadette Rosati, Erik Herrmann, Silvia Bucci, Federico Fierli, Francesco Cairo, Martin Gysel, Ralf Tillmann, Johannes Größ, Gian Paolo Gobbi, Luca Di Liberto, Guido Di Donfrancesco, Alfred Wiedensohler, Ernest Weingartner, Annele Virtanen, Thomas F. Mentel, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4539–4554, https://doi.org/10.5194/acp-16-4539-2016, https://doi.org/10.5194/acp-16-4539-2016, 2016
Short summary
Short summary
We present vertical profiles of aerosol optical properties, which were explored within the planetary boundary layer in a case study in 2012 in the Po Valley region. A comparison of in situ measurements recorded aboard a Zeppelin NT and ground-based remote-sensing data was performed yielding good agreement. Additionally, the role of ambient relative humidity for the aerosol particles' optical properties was investigated.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Christopher R. Hoyle, Clare S. Webster, Harald E. Rieder, Athanasios Nenes, Emanuel Hammer, Erik Herrmann, Martin Gysel, Nicolas Bukowiecki, Ernest Weingartner, Martin Steinbacher, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4043–4061, https://doi.org/10.5194/acp-16-4043-2016, https://doi.org/10.5194/acp-16-4043-2016, 2016
Short summary
Short summary
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from the high-altitude site Jungfraujoch. It is found that cloud droplet formation at the Jungfraujoch is predominantly controlled by the number concentration of aerosol particles. A statistical model based on only the number of particles larger than 80nm can explain 79 % of the observed variance in droplet numbers.
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
I. Crawford, G. Lloyd, E. Herrmann, C. R. Hoyle, K. N. Bower, P. J. Connolly, M. J. Flynn, P. H. Kaye, T. W. Choularton, and M. W. Gallagher
Atmos. Chem. Phys., 16, 2273–2284, https://doi.org/10.5194/acp-16-2273-2016, https://doi.org/10.5194/acp-16-2273-2016, 2016
Short summary
Short summary
In this manuscript we discuss observations of fluorescent aerosol and their interactions with cloud at a high-alpine site in the wintertime under background conditions. We find the majority of the fluorescent aerosol to be consistent in nature to mineral dust and no apparent trend was observed between the fluorescent aerosol fraction and meteorological or cloud microphysical parameters, suggesting that particle fluorescence does not impact cloud evolution or formation at the site.
Andrea Paciga, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, Monica Crippa, André S. H. Prévôt, Urs Baltensperger, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, https://doi.org/10.5194/acp-16-2013-2016, 2016
Short summary
Short summary
We estimate the volatility distribution for the organic aerosol (OA) components during summer and winter field campaigns in Paris, France as part of the collaborative project MEGAPOLI. The OA factors (hydrocarbon like OA, cooking OA, marine OA, oxygenated OA) had a broad spectrum of volatilities with no direct link between the average volatility and average oxygen to carbon of the OA components.
Sebnem Aksoyoglu, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, https://doi.org/10.5194/acp-16-1895-2016, 2016
Short summary
Short summary
As a least-regulated source, ship emissions contribute significantly to air pollution. We used an air quality model to determine the effects of international shipping on the annual and seasonal concentrations of ozone, primary and secondary components of PM2.5, and dry and wet deposition of N and S compounds in Europe. The results presented in this paper suggest evolution of NOx emissions from ships and land-based NH3 emissions will play a significant role in the future European air quality.
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
K. R. Daellenbach, C. Bozzetti, A. Křepelová, F. Canonaco, R. Wolf, P. Zotter, P. Fermo, M. Crippa, J. G. Slowik, Y. Sosedova, Y. Zhang, R.-J. Huang, L. Poulain, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt
Atmos. Meas. Tech., 9, 23–39, https://doi.org/10.5194/amt-9-23-2016, https://doi.org/10.5194/amt-9-23-2016, 2016
Short summary
Short summary
In this study, we developed an offline technique using the AMS for the characterization of the chemical fingerprints of aerosols collected on quartz filters, and evaluated the suitability of the organic mass spectral data for source apportionment. This technique may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
Z. Jurányi, H. Burtscher, M. Loepfe, M. Nenkov, and E. Weingartner
Atmos. Meas. Tech., 8, 5213–5222, https://doi.org/10.5194/amt-8-5213-2015, https://doi.org/10.5194/amt-8-5213-2015, 2015
Short summary
Short summary
Volcanic eruption can be a serious security risk for airplanes. We develop a new aerosol sensor for the reliable detection of volcanic ash on airplanes. We introduce here the laboratory prototype of this instrument, which is able to distinguish between water droplets and volcanic ash particles by measuring the scattered light at two distinct wavelengths simultaneously. The different optical behaviour of volcanic ash and water at these wavelengths makes this differentiation possible.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
G. Guyot, C. Gourbeyre, G. Febvre, V. Shcherbakov, F. Burnet, J.-C. Dupont, K. Sellegri, and O. Jourdan
Atmos. Meas. Tech., 8, 4347–4367, https://doi.org/10.5194/amt-8-4347-2015, https://doi.org/10.5194/amt-8-4347-2015, 2015
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, F. Canonaco, P. L. Croteau, M. Gysel, S. Henne, E. Herrmann, J. T. Jayne, M. Steinbacher, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11373–11398, https://doi.org/10.5194/acp-15-11373-2015, https://doi.org/10.5194/acp-15-11373-2015, 2015
Short summary
Short summary
This manuscript presents the first long-term (14-month) and highly time-resolved (10 min) measurements of NR-PM1 aerosol chemical composition at a high-altitude site (JFJ, Switzerland, 3580m a.s.l.). The elevated location allowed the investigation of free tropospheric aerosol year round. Total and relative mass loadings, diurnal variations as well as seasonal variations are discussed together with geographical origin, organic aerosol sources and the influence of the planetary boundary layer.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
A. Kürten, S. Münch, L. Rondo, F. Bianchi, J. Duplissy, T. Jokinen, H. Junninen, N. Sarnela, S. Schobesberger, M. Simon, M. Sipilä, J. Almeida, A. Amorim, J. Dommen, N. M. Donahue, E. M. Dunne, R. C. Flagan, A. Franchin, J. Kirkby, A. Kupc, V. Makhmutov, T. Petäjä, A. P. Praplan, F. Riccobono, G. Steiner, A. Tomé, G. Tsagkogeorgas, P. E. Wagner, D. Wimmer, U. Baltensperger, M. Kulmala, D. R. Worsnop, and J. Curtius
Atmos. Chem. Phys., 15, 10701–10721, https://doi.org/10.5194/acp-15-10701-2015, https://doi.org/10.5194/acp-15-10701-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important atmospheric process. At cold temperatures in the upper troposphere the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system are thought to be important for NPF. Sulfuric acid monomer (H2SO4) and sulfuric acid dimer ((H2SO4)2) concentrations were measured between 208 and 248K for these systems and dimer evaporation rates were derived. These data will help to better understand and predict binary and ternary nucleation at low temperatures.
E. Hammer, N. Bukowiecki, B. P. Luo, U. Lohmann, C. Marcolli, E. Weingartner, U. Baltensperger, and C. R. Hoyle
Atmos. Chem. Phys., 15, 10309–10323, https://doi.org/10.5194/acp-15-10309-2015, https://doi.org/10.5194/acp-15-10309-2015, 2015
Short summary
Short summary
An important quantity which determines aerosol activation and cloud formation is the effective peak supersaturation. The box model ZOMM was used to simulate the effective peak supersaturation experienced by an air parcel approaching a high-alpine research station in Switzerland. With the box model the sensitivity of the effective peak supersaturation to key aerosol and dynamical parameters was investigated.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
C. Rose, K. Sellegri, E. Freney, R. Dupuy, A. Colomb, J.-M. Pichon, M. Ribeiro, T. Bourianne, F. Burnet, and A. Schwarzenboeck
Atmos. Chem. Phys., 15, 10203–10218, https://doi.org/10.5194/acp-15-10203-2015, https://doi.org/10.5194/acp-15-10203-2015, 2015
Short summary
Short summary
In the present paper we report airborne measurements of new particle formation (NPF) above the Mediterranean Sea (HYMEX campaign). We show that NPF occurs over large areas above the sea, but the process is clearly promoted at high altitude, above 1000m, i.e. frequently in the free troposphere. NPF also seems to be mainly influenced by local processes occurring above the sea. After their formation, particles slowly grow at high altitude while not being greatly depleted or affected by coagulation.
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
P. Kupiszewski, E. Weingartner, P. Vochezer, M. Schnaiter, A. Bigi, M. Gysel, B. Rosati, E. Toprak, S. Mertes, and U. Baltensperger
Atmos. Meas. Tech., 8, 3087–3106, https://doi.org/10.5194/amt-8-3087-2015, https://doi.org/10.5194/amt-8-3087-2015, 2015
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
A. Franchin, S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, L. Rondo, A. Downard, F. Bianchi, A. Kupc, G. Tsagkogeorgas, K. Lehtipalo, H. E. Manninen, J. Almeida, A. Amorim, P. E. Wagner, A. Hansel, J. Kirkby, A. Kürten, N. M. Donahue, V. Makhmutov, S. Mathot, A. Metzger, T. Petäjä, R. Schnitzhofer, M. Sipilä, Y. Stozhkov, A. Tomé, V.-M. Kerminen, K. Carslaw, J. Curtius, U. Baltensperger, and M. Kulmala
Atmos. Chem. Phys., 15, 7203–7216, https://doi.org/10.5194/acp-15-7203-2015, https://doi.org/10.5194/acp-15-7203-2015, 2015
Short summary
Short summary
The ion-ion recombination coefficient was measured at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the CLOUD chamber at CERN.
We observed a strong dependency on temperature and on relative humidity, which has not been reported previously. No dependency of the ion-ion recombination coefficient on ozone concentration was observed and a weak variation with sulfur dioxide concentration was also observed.
F. Canonaco, J. G. Slowik, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-15-6993-2015, https://doi.org/10.5194/acp-15-6993-2015, 2015
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
T. Elias, J.-C. Dupont, E. Hammer, C. R. Hoyle, M. Haeffelin, F. Burnet, and D. Jolivet
Atmos. Chem. Phys., 15, 6605–6623, https://doi.org/10.5194/acp-15-6605-2015, https://doi.org/10.5194/acp-15-6605-2015, 2015
E. A. Bruns, I. El Haddad, A. Keller, F. Klein, N. K. Kumar, S. M. Pieber, J. C. Corbin, J. G. Slowik, W. H. Brune, U. Baltensperger, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2315–2332, https://doi.org/10.5194/amt-8-2315-2015, https://doi.org/10.5194/amt-8-2315-2015, 2015
A. Worringen, K. Kandler, N. Benker, T. Dirsch, S. Mertes, L. Schenk, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, J. Curtius, P. Kupiszewski, E. Weingartner, P. Vochezer, J. Schneider, S. Schmidt, S. Weinbruch, and M. Ebert
Atmos. Chem. Phys., 15, 4161–4178, https://doi.org/10.5194/acp-15-4161-2015, https://doi.org/10.5194/acp-15-4161-2015, 2015
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn, T. Jokinen, H. Junninen, A. Adamov, A. Amorim, J. Dommen, J. Duplissy, J. Hakala, A. Hansel, M. Heinritzi, J. Kangasluoma, J. Kirkby, M. Krapf, A. Kürten, K. Lehtipalo, F. Riccobono, L. Rondo, N. Sarnela, M. Simon, A. Tomé, J. Tröstl, P. M. Winkler, C. Williamson, P. Ye, J. Curtius, U. Baltensperger, N. M. Donahue, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, https://doi.org/10.5194/acp-15-4145-2015, 2015
Short summary
Short summary
Our study shows, based on data from three atmospheric pressure interface time-of-flight mass spectrometers measuring in parallel charged and neutral molecules and molecular clusters, how oxidised organic compounds bind to inorganic ions (e.g. bisulfate, nitrate, ammonium). This ionisation is selective for compounds with lower molar mass due to their limited amount and variety of functional groups. We also found that extremely low volatile organic compounds (ELVOCs) can be formed immediately.
J.-E. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-Estève, N. Bonnaire, G. Močnik, J.-C. Dupont, M. Haeffelin, and E. Leoz-Garziandia
Atmos. Chem. Phys., 15, 2985–3005, https://doi.org/10.5194/acp-15-2985-2015, https://doi.org/10.5194/acp-15-2985-2015, 2015
E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Močnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2825–2841, https://doi.org/10.5194/acp-15-2825-2015, https://doi.org/10.5194/acp-15-2825-2015, 2015
Short summary
Short summary
Residential wood combustion contributes significantly to the total atmospheric particulate burden; however, uncertainties remain in the magnitude and characteristics of wood burning products. The effects of wood loading on freshly emitted and aged emissions were investigated. Polycyclic aromatic hydrocarbons, which negatively impact health, contributed more to the total organic aerosol under highly loaded burner conditions, which has significant implications for burner operation protocols.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, R. Dressler, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, S. C. Herndon, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, A. Detournay, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2367–2386, https://doi.org/10.5194/acp-15-2367-2015, https://doi.org/10.5194/acp-15-2367-2015, 2015
Short summary
Short summary
Ambient concentrations of trace elements with 2h time resolution were measured in three size ranges (PM10–2.5, PM2.5–1.0, PM1.0–0.3) at kerbside, urban background and rural sites in London during the ClearfLo (Clean Air for London) field campaign. Quantification of kerb and urban increments, and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure.
B. Rosati, G. Wehrle, M. Gysel, P. Zieger, U. Baltensperger, and E. Weingartner
Atmos. Meas. Tech., 8, 921–939, https://doi.org/10.5194/amt-8-921-2015, https://doi.org/10.5194/amt-8-921-2015, 2015
Short summary
Short summary
Only few measurements focused on vertical profiles of aerosol hygroscopic and optical properties in airborne studies. For this purpose the white-light optical particle spectrometer (WHOPS) was developed. It allows a relatively fast measurement of the particles hygroscopicity, mixing state and index of refraction of particles in the optically relevant size range. This paper presents a detailed technical description and characterization of the WHOPS and first results from the field.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, C. Thaury, M. Jeannot, B. Couté, R. Akiki, J.-L. Mineau, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and D. Daugeron
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-1203-2015, https://doi.org/10.5194/amtd-8-1203-2015, 2015
Revised manuscript not accepted
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy, A. Kürten, I. K. Ortega, A. Metzger, R. Schnitzhofer, J. Almeida, A. Amorim, J. Dommen, E. M. Dunne, M. Ehn, S. Gagné, L. Ickes, H. Junninen, A. Hansel, V.-M. Kerminen, J. Kirkby, A. Kupc, A. Laaksonen, K. Lehtipalo, S. Mathot, A. Onnela, T. Petäjä, F. Riccobono, F. D. Santos, M. Sipilä, A. Tomé, G. Tsagkogeorgas, Y. Viisanen, P. E. Wagner, D. Wimmer, J. Curtius, N. M. Donahue, U. Baltensperger, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015, https://doi.org/10.5194/acp-15-55-2015, 2015
Short summary
Short summary
We used an ion mass spectrometer at CERN's CLOUD chamber to investigate the detailed composition of ammonia--sulfuric acid ion clusters (of both polarities) as they initially form and then grow into aerosol particles, at atmospherically relevant conditions. We found that these clusters’ composition is mainly determined by the ratio of the precursor vapors and ranges from ammonia-free clusters to clusters containing > 1 ammonia per sulfuric acid. Acid--base bindings are a key formation mechanism.
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
S. Aksoyoglu, J. Keller, G. Ciarelli, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 14, 13081–13095, https://doi.org/10.5194/acp-14-13081-2014, https://doi.org/10.5194/acp-14-13081-2014, 2014
Short summary
Short summary
We report a study of changes in the European air quality due to emission reductions, using the chemical transport model CAMx. The model simulations were performed with emissions for 1990, 2005, 2006 and 2020 using three emission scenarios prepared by IIASA/GAINS. Model evaluation was carried out for 2006. We calculated the changes between 1990 and 2005, and between 2005 and 2020. Changes in ozone, particulate matter and nitrogen deposition are the central theme of this study.
A. D. Griffiths, F. Conen, E. Weingartner, L. Zimmermann, S. D. Chambers, A. G. Williams, and M. Steinbacher
Atmos. Chem. Phys., 14, 12763–12779, https://doi.org/10.5194/acp-14-12763-2014, https://doi.org/10.5194/acp-14-12763-2014, 2014
Short summary
Short summary
Radon detectors at Bern and Jungfraujoch were used to monitor the transport of radon-rich boundary layer air from the Swiss Plateau to the Alpine ridge. Radon was successfully used to discriminate between different types of vertical transport, using the shape of the diurnal cycle to identify days with upslope mountain winds. For many air-mass properties, however, the total land-surface influence (indicated by the radon concentration) was more decisive than the type of vertical transport.
O. Geoffroy, A. P. Siebesma, and F. Burnet
Atmos. Chem. Phys., 14, 10897–10909, https://doi.org/10.5194/acp-14-10897-2014, https://doi.org/10.5194/acp-14-10897-2014, 2014
W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge
Atmos. Chem. Phys., 14, 10439–10464, https://doi.org/10.5194/acp-14-10439-2014, https://doi.org/10.5194/acp-14-10439-2014, 2014
A. P. Praplan, K. Hegyi-Gaeggeler, P. Barmet, L. Pfaffenberger, J. Dommen, and U. Baltensperger
Atmos. Chem. Phys., 14, 8665–8677, https://doi.org/10.5194/acp-14-8665-2014, https://doi.org/10.5194/acp-14-8665-2014, 2014
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
R. Chirico, M. Clairotte, T. W. Adam, B. Giechaskiel, M. F. Heringa, M. Elsasser, G. Martini, U. Manfredi, T. Streibel, M. Sklorz, R. Zimmermann, P. F. DeCarlo, C. Astorga, U. Baltensperger, and A. S. H. Prevot
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-16591-2014, https://doi.org/10.5194/acpd-14-16591-2014, 2014
Revised manuscript has not been submitted
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, C. Voigt, and B. Weinzierl
Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, https://doi.org/10.5194/acp-14-6111-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
J. C. Corbin, B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah
Atmos. Chem. Phys., 14, 2591–2603, https://doi.org/10.5194/acp-14-2591-2014, https://doi.org/10.5194/acp-14-2591-2014, 2014
E. Hammer, N. Bukowiecki, M. Gysel, Z. Jurányi, C. R. Hoyle, R. Vogt, U. Baltensperger, and E. Weingartner
Atmos. Chem. Phys., 14, 1123–1139, https://doi.org/10.5194/acp-14-1123-2014, https://doi.org/10.5194/acp-14-1123-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
S.-L. von der Weiden-Reinmüller, F. Drewnick, M. Crippa, A. S. H. Prévôt, F. Meleux, U. Baltensperger, M. Beekmann, and S. Borrmann
Atmos. Meas. Tech., 7, 279–299, https://doi.org/10.5194/amt-7-279-2014, https://doi.org/10.5194/amt-7-279-2014, 2014
F. Canonaco, M. Crippa, J. G. Slowik, U. Baltensperger, and A. S. H. Prévôt
Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, https://doi.org/10.5194/amt-6-3649-2013, 2013
D. Rose, S. S. Gunthe, Z. Jurányi, M. Gysel, G. P. Frank, J. Schneider, J. Curtius, and U. Pöschl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-32575-2013, https://doi.org/10.5194/acpd-13-32575-2013, 2013
Revised manuscript has not been submitted
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, A. S. H. Prévôt, U. Baltensperger, J. Schneider, J. R. Kimmel, M. Gonin, U. Rohner, D. R. Worsnop, and J. T. Jayne
Atmos. Meas. Tech., 6, 3225–3241, https://doi.org/10.5194/amt-6-3225-2013, https://doi.org/10.5194/amt-6-3225-2013, 2013
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, https://doi.org/10.5194/acp-13-10769-2013, 2013
P. Zieger, R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger
Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, https://doi.org/10.5194/acp-13-10609-2013, 2013
A. Wonaschütz, M. Coggon, A. Sorooshian, R. Modini, A. A. Frossard, L. Ahlm, J. Mülmenstädt, G. C. Roberts, L. M. Russell, S. Dey, F. J. Brechtel, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 9819–9835, https://doi.org/10.5194/acp-13-9819-2013, https://doi.org/10.5194/acp-13-9819-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, https://doi.org/10.5194/acp-13-9577-2013, 2013
R. M. Healy, J. Sciare, L. Poulain, M. Crippa, A. Wiedensohler, A. S. H. Prévôt, U. Baltensperger, R. Sarda-Estève, M. L. McGuire, C.-H. Jeong, E. McGillicuddy, I. P. O'Connor, J. R. Sodeau, G. J. Evans, and J. C. Wenger
Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, https://doi.org/10.5194/acp-13-9479-2013, 2013
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, https://doi.org/10.5194/acp-13-9141-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
M. Crippa, F. Canonaco, J. G. Slowik, I. El Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 8411–8426, https://doi.org/10.5194/acp-13-8411-2013, https://doi.org/10.5194/acp-13-8411-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
L. Pfaffenberger, P. Barmet, J. G. Slowik, A. P. Praplan, J. Dommen, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 6493–6506, https://doi.org/10.5194/acp-13-6493-2013, https://doi.org/10.5194/acp-13-6493-2013, 2013
Z. Jurányi, T. Tritscher, M. Gysel, M. Laborde, L. Gomes, G. Roberts, U. Baltensperger, and E. Weingartner
Atmos. Chem. Phys., 13, 6431–6446, https://doi.org/10.5194/acp-13-6431-2013, https://doi.org/10.5194/acp-13-6431-2013, 2013
M. Laborde, M. Crippa, T. Tritscher, Z. Jurányi, P. F. Decarlo, B. Temime-Roussel, N. Marchand, S. Eckhardt, A. Stohl, U. Baltensperger, A. S. H. Prévôt, E. Weingartner, and M. Gysel
Atmos. Chem. Phys., 13, 5831–5856, https://doi.org/10.5194/acp-13-5831-2013, https://doi.org/10.5194/acp-13-5831-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen
Atmos. Chem. Phys., 13, 5587–5600, https://doi.org/10.5194/acp-13-5587-2013, https://doi.org/10.5194/acp-13-5587-2013, 2013
M. Frosch, M. Bilde, A. Nenes, A. P. Praplan, Z. Jurányi, J. Dommen, M. Gysel, E. Weingartner, and U. Baltensperger
Atmos. Chem. Phys., 13, 2283–2297, https://doi.org/10.5194/acp-13-2283-2013, https://doi.org/10.5194/acp-13-2283-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
C. Chou, Z. A. Kanji, O. Stetzer, T. Tritscher, R. Chirico, M. F. Heringa, E. Weingartner, A. S. H. Prévôt, U. Baltensperger, and U. Lohmann
Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, https://doi.org/10.5194/acp-13-761-2013, 2013
A. Asmi, M. Collaud Coen, J. A. Ogren, E. Andrews, P. Sheridan, A. Jefferson, E. Weingartner, U. Baltensperger, N. Bukowiecki, H. Lihavainen, N. Kivekäs, E. Asmi, P. P. Aalto, M. Kulmala, A. Wiedensohler, W. Birmili, A. Hamed, C. O'Dowd, S. G Jennings, R. Weller, H. Flentje, A. M. Fjaeraa, M. Fiebig, C. L. Myhre, A. G. Hallar, E. Swietlicki, A. Kristensson, and P. Laj
Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, https://doi.org/10.5194/acp-13-895-2013, 2013
M. Collaud Coen, E. Andrews, A. Asmi, U. Baltensperger, N. Bukowiecki, D. Day, M. Fiebig, A. M. Fjaeraa, H. Flentje, A. Hyvärinen, A. Jefferson, S. G. Jennings, G. Kouvarakis, H. Lihavainen, C. Lund Myhre, W. C. Malm, N. Mihapopoulos, J. V. Molenar, C. O'Dowd, J. A. Ogren, B. A. Schichtel, P. Sheridan, A. Virkkula, E. Weingartner, R. Weller, and P. Laj
Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013, https://doi.org/10.5194/acp-13-869-2013, 2013
M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel
Atmos. Meas. Tech., 5, 3077–3097, https://doi.org/10.5194/amt-5-3077-2012, https://doi.org/10.5194/amt-5-3077-2012, 2012
M. Gysel, M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau
Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, https://doi.org/10.5194/amt-5-3099-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by the VH-TDMA system in the autumn of 2023
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
In situ vertical observations of the layered structure of air pollution in a continental high latitude urban boundary layer during winter
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Measurement Report: An investigation of the spatiotemporal variability of aerosol in the mountainous terrain of the Upper Colorado River Basin from SAIL-Net
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Terrestrial runoff is an important source of biological INPs in Arctic marine systems
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Measurement Report: Seasonal variation and anthropogenic influence on cloud condensation nuclei (CCN) activity in the South China Sea: Insights from shipborne observations during summer and winter of 2021
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Pollution affects Arabian and Saharan dust optical properties in the Eastern Mediterranean
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025, https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Short summary
Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2232, https://doi.org/10.5194/egusphere-2024-2232, 2024
Short summary
Short summary
In this work, we utilized the VH-TDMA system to investigate the hygroscopicity and volatility, as well as the hygroscopicity after heated of submicron aerosols in urban Beijing during the autumn of 2023 for the first time. We analyzed the size-resolved characteristics of hygroscopicity and volatility, the relationship between hygroscopic and volatile properties, as well as the hygroscopicity of heated submicron aerosols.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1780, https://doi.org/10.5194/egusphere-2024-1780, 2024
Short summary
Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was stationed in the East River Watershed in CO, USA to study the variability of aerosol in mountainous terrain. We found that aerosol variability was related to elevation differences and the variability changed seasonally. This suggests that model accuracy could be inconsistent over different seasons in complex terrain. This work provides a blueprint for future studies in other mountainous regions.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Maire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
EGUsphere, https://doi.org/10.5194/egusphere-2024-1633, https://doi.org/10.5194/egusphere-2024-1633, 2024
Short summary
Short summary
The Arctic region is subjected to profound changes due to the warming climate. Ice nucleating particles (INPs) in the seawater can get transported to the atmosphere and impact cloud formation. However, the sources of characteristics of INPs in the marine areas are poorly understood. We investigated the INPs in seawater from Greenlandic fjords and identified a seasonal variability and highly active INPs originating from terrestrial sources.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-956, https://doi.org/10.5194/egusphere-2024-956, 2024
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) during the summer and winter of 2021 were conducted. Our study found that aerosol hygroscopicity is higher in SCS in summer than in winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio (AR) than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of CCN activities in the SCS.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-701, https://doi.org/10.5194/egusphere-2024-701, 2024
Short summary
Short summary
The A-LIFE aircraft field experiment was carried out in the Eastern Mediterranean in 2017. Using A-LIFE data, we studied the change in mineral dust optical properties due to mixing with anthropogenic aerosols. We found that increasing pollution affects dust optical properties which has implications for identifying dust events and understanding their climate effects. We also show that optical properties of Saharan and Arabian dust are similar when comparing cases with equal pollution content.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Cited articles
Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L., Morales-García, F., García-García, F., Montero-Martínez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G. P., and Krämer, M.: Clouds and aerosols in Puerto Rico – a new evaluation, Atmos. Chem. Phys., 8, 1293–1309, https://doi.org/10.5194/acp-8-1293-2008, 2008.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions, Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Baltensperger, U., Streit, N., Weingartner, E., Nyeki, S., Prévôt, A. S. H., Van Dingenen, R., Virkkula, A., Putaud, J.-P., Even, A., ten Brink, H., Blatter, A., Neftel, A., and Gäggeler, H. W.: Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy, J. Geophys. Res.-Atmos., 107, 8193, https://doi.org/10.1029/2001JD001292, 2002.
Bergot, T.: Quality assessment of the Cobel-Isba numerical forecast system of fog and low clouds, Pure Appl. Geophys., 164, 1265–1282, https://doi.org/10.1007/s00024-007-0218-3, 2007.
Bott, A., Sievers, U., and Zdunkowski, W.: A radiation fog model with a detailed treatment of the interaction between radiative-transfer and fog microphysics, J. Atmos. Sci., 47, 2153–2166, https://doi.org/10.1175/1520-0469(1990)047<2153:ARFMWA>2.0.CO;2, 1990.
Burnet, F., Gomes, L., Haeffelin, M., Dupont, J., and Elias, T.: Analysis of the microphysical structures of fog during the ParisFog project, in: Proceedings of the 16th international conference of clouds and precipitation (ICCP), Leipzig, Germany, 30 July–3 August, 582, 2012.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013a.
Crippa, M., El Haddad, I., Slowik, J. G., DeCarlo, P. F., Mohr, C., Heringa, M. F., Chirico, R., Marchand, N., Sciare, J., Baltensperger, U., and Prevot, A. S. H.: Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 118, 1950–1963, https://doi.org/10.1002/jgrd.50151, 2013b.
David, N., Alpert, P., and Messer, H.: The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions, Atmos. Res., 131, 13–21, https://doi.org/10.1016/j.atmosres.2013.01.004, 2013.
Ditas, F., Shaw, R. A., Siebert, H., Simmel, M., Wehner, B., and Wiedensohler, A.: Aerosols-cloud microphysics-thermodynamics-turbulence: evaluating supersaturation in a marine stratocumulus cloud, Atmos. Chem. Phys., 12, 2459–2468, https://doi.org/10.5194/acp-12-2459-2012, 2012.
Dupont, J.-C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N., and Morille, Y.: Stratus – fog formation and dissipation: a 6-day case study, Bound.-Lay. Meteorol., 143, 207–225, https://doi.org/10.1007/s10546-012-9699-4, 2012.
Duynkerke, P. G.: Radiation fog: a comparison of model simulation with detailed observations, Mon. Weather Rev., 119, 324–341, https://doi.org/10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2, 1991.
Elias, T., Haeffelin, M., Drobinski, P., Gomes, L., Rangognio, J., Bergot, T., Chazette, P., Raut, J.-C., and Colomb, M.: Particulate contribution to extinction of visible radiation: pollution, haze, and fog, Atmos. Res., 92, 443–454, https://doi.org/10.1016/j.atmosres.2009.01.006, 2009.
Elias, T., Dupont, J.-C., Hammer, E., Hoyle, C. R., Haeffelin, M., Burnet, F., and Jolivet, D.: Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog, Atmos. Chem. Phys., submitted, 2014.
Facchini, M. C., Fuzzi, S., Lind, J. A., Fierlinger-Oberlinninger, H., Kalina, M., Puxbaum, H., Winiwarter, W., Arends, B. G., Wobrock, W., Jaeschke, W., Berner, A., and Kruisz, C.: Phase-partitioning and chemical reactions of low molecular weight organic compounds in fog, Tellus B, 44, 533–544, https://doi.org/10.1034/j.1600-0889.1992.t01-3-00007.x, 1992.
Fuzzi, S., Facchini, M. C., Orsi, G., and Ferri, D.: Seasonal trend of fog water chemical composition in the Po Valley, Environ. Pollut., 75, 75–80, https://doi.org/10.1016/0269-7491(92)90059-J, 1992.
Gerber, H.: Supersaturation and droplet spectral evolution in fog, J. Atmos. Sci., 48, 2569–2588, https://doi.org/10.1175/1520-0469(1991)048<2569:Sadsei>2.0.Co;2, 1991.
Guedalia, D. and Bergot, T.: Numerical forecasting of radiation fog, Part II: A comparison of model simulation with several observed fog events, Mon. Weather Rev., 122, 1231–1246, https://doi.org/10.1175/1520-0493(1994)122<1231:NFORFP>2.0.CO;2, 1994.
Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., Müller, M. D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G., and Cober, S. G.: Fog research: a review of past achievements and future perspectives, Pure Appl. Geophys., 164, 1121–1159, https://doi.org/10.1007/s00024-007-0211-x, 2007.
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lema\^itre, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R.: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253–275, https://doi.org/10.5194/angeo-23-253-2005, 2005.
Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., Colomb, M., Drobinski, P., Dupont, E., Dupont, J. C., Gomes, L., Musson-Genon, L., Pietras, C., Plana-Fattori, A., Protat, A., Rangognio, J., Raut, J. C., Remy, S., Richard, D., Sciare, J., and Zhang, X.: Parisfog shedding new light on fog physical processes, B. Am. Meteorol. Soc., 91, 767–783, https://doi.org/10.1175/2009BAMS2671.1, 2010.
Haeffelin, M., Dupont, J.-C., Boyouk, N., Baumgardner, D., Gomes, L., Roberts, G., and Elias, T.: A comparative study of radiation fog and quasi-fog formation processes during the ParisFog field experiment 2007, Pure Appl. Geophys., 170, 2283–2303, https://doi.org/10.1007/s00024-013-0672-z, 2013.
Hammer, E., Bukowiecki, N., Gysel, M., Jurányi, Z., Hoyle, C. R., Vogt, R., Baltensperger, U., and Weingartner, E.: Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.), Atmos. Chem. Phys., 14, 1123–1139, https://doi.org/10.5194/acp-14-1123-2014, 2014.
Harrison, R.: Aerosol-induced correlation between visibility and atmospheric electricity, J. Aerosol Sci., 52, 121–126, https://doi.org/10.1016/j.jaerosci.2012.04.011, 2012.
Heim, M., Mullins, B. J., Umhauer, H., and Kasper, G.: Performance evaluation of three optical particle counters with an efficient "multimodal" calibration method, J. Aerosol Sci., 39, 1019–1031, https://doi.org/10.1016/j.jaerosci.2008.07.006, 2008.
Heintzenberg, J.: The Po Valley Fog Experiment 1989 – what have we learned, where do we go from here?, Tellus B, 44, 443–447, https://doi.org/10.1034/j.1600-0889.1991.t01-3-00002.x-i1, 1992.
Henning, S., Weingartner, E., Schmidt, S., Wendisch, M., Gaggeler, H. W., and Baltensperger, U.: Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m a.s.l.), Tellus B, 54, 82–95, https://doi.org/10.1034/j.1600-0889.2002.00299.x, 2002.
Henning, S., Dieckmann, K., Ignatius, K., Schäfer, M., Zedler, P., Harris, E., Sinha, B., van Pinxteren, D., Mertes, S., Birmili, W., Merkel, M., Wu, Z., Wiedensohler, A., Wex, H., Herrmann, H., and Stratmann, F.: Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010, Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, 2014.
Hudson, J. G. and Rogers, C. F.: Relationship between critical supersaturation and cloud droplet size: implications for cloud mixing processes, J. Atmos. Sci., 43, 2341–2359, https://doi.org/10.1175/1520-0469(1986)043<2341:RBCSAC>2.0.CO;2, 1986.
Hupfer, P., Kuttler, W., and Chmielewski, F.-M.: Witterung und Klima: eine Einführung in die Meteorologie und Klimatologie, Springer, Germany, 2005.
Jurányi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L., and Baltensperger, U.: A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch, J. Geophys. Res.-Atmos., 116, D10204, https://doi.org/10.1029/2010JD015199, 2011.
Jurányi, Z., Tritscher, T., Gysel, M., Laborde, M., Gomes, L., Roberts, G., Baltensperger, U., and Weingartner, E.: Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris, Atmos. Chem. Phys., 13, 6431–6446, https://doi.org/10.5194/acp-13-6431-2013, 2013.
Kamilli, K. A., Poulain, L., Held, A., Nowak, A., Birmili, W., and Wiedensohler, A.: Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition, Atmos. Chem. Phys., 14, 737–749, https://doi.org/10.5194/acp-14-737-2014, 2014.
Kim, C. and Yum, S.: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model, Bound.-Lay. Meteorol., 143, 481–505, https://doi.org/10.1007/s10546-012-9706-9, 2012.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 32, 1152–1161, 1936.
Koschmieder, H.: Theorie der horizontalen Sichtweite, Beiträge Physicae Freiberger Atmosphere, 12, 171–181, 1925.
Krüger, M. L., Mertes, S., Klimach, T., Cheng, Y. F., Su, H., Schneider, J., Andreae, M. O., Pöschl, U., and Rose, D.: Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements, Atmos. Meas. Tech., 7, 2615–2629, https://doi.org/10.5194/amt-7-2615-2014, 2014.
Laborde, M., Crippa, M., Tritscher, T., Jurányi, Z., Decarlo, P. F., Temime-Roussel, B., Marchand, N., Eckhardt, S., Stohl, A., Baltensperger, U., Prévôt, A. S. H., Weingartner, E., and Gysel, M.: Black carbon physical properties and mixing state in the European megacity Paris, Atmos. Chem. Phys., 13, 5831–5856, https://doi.org/10.5194/acp-13-5831-2013, 2013.
Maier, F., Bendix, J., and Thies, B.: Development and application of a method for the objective differentiation of fog life cycle phases, Tellus B, 65, 19971, https://doi.org/10.3402/tellusb.v65i0.19971, 2013.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Meng, Z. and Seinfeld, J. H.: On the source of the submicrometer droplet mode of urban and regional aerosols, Aerosol Sci. Tech., 20, 253–265, https://doi.org/10.1080/02786829408959681, 1994.
Meyer, M. B., Lala, G. G., and Jiusto, J. E.: Fog-82: a cooperative field study of radiation fog, B. Am. Meteorol. Soc., 67, 825–832, https://doi.org/10.1175/1520-0477(1986)067<0825:FACFSO>2.0.CO;2, 1986.
Ming, Y. and Russell, L. M.: Organic aerosol effects on fog droplet spectra, J. Geophys. Res.-Atmos., 109, D10109, https://doi.org/10.1029/2003JD004427, 2004.
Nenes, A., Ghan, S., Abdul-Razzak, H., Chuang, P. Y., and Seinfeld, J. H.: Kinetic limitations on cloud droplet formation and impact on cloud albedo, Tellus B, 53, 133–149, https://doi.org/10.1034/j.1600-0889.2001.d01-12.x, 2001.
Noone, K. J., Ogren, J. A., Hallberg, A., Hansson, H. C., Wiedensohler, A., and Swietlicki, E.: A statistical examination of the chemical differences between interstitial and scavenged aerosol, Tellus B, 44, 581–592, https://doi.org/10.1034/j.1600-0889.1992.t01-1-00011.x, 1992a.
Noone, K. J., Ogren, J. A., Hallberg, A., Heintzenberg, J., Strom, J., Hansson, H. C., Svenningsson, B., Wiedensohler, A., Fuzzi, S., Facchini, M. C., Arends, B. G., and Berner, A.: Changes in aerosol size and phase distributions due to physical and chemical processes in fog, Tellus B, 44, 489–504, https://doi.org/10.1034/j.1600-0889.1992.t01-4-00004.x, 1992b.
Pandis, S. N. and Seinfeld, J. H.: Mathematical-modeling of acid deposition due to radiation fog, J. Geophys. Res.-Atmos., 94, 12911–12923, https://doi.org/10.1029/JD094iD10p12911, 1989.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Phinney, L. A., Lohmann, U., and Leaitch, R.: Limitations of using an equilibrium approximation in an aerosol activation parameterization, J. Geophys. Res., 108, 4371, https://doi.org/10.1029/2002JD002391, 2003.
Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241–5255, https://doi.org/10.5194/acp-10-5241-2010, 2010.
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Tech., 39, 206–221, https://doi.org/10.1080/027868290913988, 2005.
Rosati, B., Wehrle, G., Zieger, P., Gysel, M., Baltensperger, U., and Weingartner, E.: The white-light humidified optical particle spectrometer (WHOPS) – a novel airborne system to characterize aerosol hygroscopicity, Atmos. Meas. Tech. Discuss., 7, 7321–7366, https://doi.org/10.5194/amtd-7-7321-2014, 2014.
Rosenfeld, J.: Cars vs. the weather: a century of progress, Weatherwise, 49, 14–23, https://doi.org/10.1080/00431672.1996.9925430, 1996.
Stolaki, S., Pytharoulis, I., and Karacostas, T.: A study of fog characteristics using a coupled WRF}-{COBEL model over Thessaloniki airport, Greece, Pure Appl. Geophys., 169, 961–981, https://doi.org/10.1007/s00024-011-0393-0, 2012.
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303–3316, https://doi.org/10.5194/acp-9-3303-2009, 2009.
Svenningsson, I. B., Hansson, H. C., Wiedensohler, A., Ogren, J. A., Noone, K. J., and Hallberg, A.: Hygroscopic growth of aerosol-particles in the Po Valley, Tellus B, 44, 556–569, https://doi.org/10.1034/j.1600-0889.1992.t01-1-00009.x, 1992.
Tardif, R. and Rasmussen, R. M.: Event-based climatology and typology of fog in the New York City region, J. Appl. Meteorol. Clim., 46, 1141–1168, https://doi.org/10.1175/JAM2516.1, 2007.
Vautard, R., Yiou, P., and van Oldenborgh, G. J.: Decline of fog, mist and haze in Europe over the past 30 years, Nat. Geosci., 2, 115–119, https://doi.org/10.1038/ngeo414, 2009.
Verheggen, B., Cozic, J., Weingartner, E., Bower, K., Mertes, S., Connolly, P., Gallagher, M., Flynn, M., Choularton, T., and Baltensperger, U.: Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, J. Geophys. Res.-Atmos., 112, D23202, https://doi.org/10.1029/2007JD008714, 2007.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Zhao, C. F., Klein, S. A., Xie, S. C., Liu, X. H., Boyle, J. S., and Zhang, Y. Y.: Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites, Geophys. Res. Lett., 39, 1944–8007, https://doi.org/10.1029/2012gl051213, 2012.
Altmetrics
Final-revised paper
Preprint