Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-9995-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9995-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of aerosol–radiation interaction on new particle formation
Gang Zhao
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Yishu Zhu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Zhijun Wu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Taomou Zong
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Jingchuan Chen
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Tianyi Tan
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Haichao Wang
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Xin Fang
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Keding Lu
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Chunsheng Zhao
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking
University, Beijing, 100871, China
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, International Joint Laboratory for Regional Pollution Control,
Ministry of Education (IJRC), College of Environmental Sciences and
Engineering, Peking University, Beijing, 100871, China
Related authors
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-21, https://doi.org/10.5194/acp-2023-21, 2023
Revised manuscript under review for ACP
Short summary
Short summary
Previous studies concentrated on black carbon (BC)-containing particle less than 700 nm because of technical limitation. In this study, BC-containing particle larger than 700 nm (BC>700) was measured, highlighting the importance of BC>700 to total BC mass and absorption. The contribution of BC>700 to BC direct radiative effect was estimated, highlighting the necessity to consider whole size range of BC-containing particle in the model estimation of BC radiative effect.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-840, https://doi.org/10.5194/acp-2022-840, 2023
Revised manuscript under review for ACP
Short summary
Short summary
Using simultaneous measurements of DMA-CCNC, H/VTDMA and DMA-SP2, impacts of primary emissions and secondary aerosol formations on changes of aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing state parameters derived from different techniques can help getting more insights into aerosol physical properties which in turn will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Gang Zhao, Tianyi Tan, Yishu Zhu, Min Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, https://doi.org/10.5194/acp-21-18055-2021, 2021
Short summary
Short summary
In this study, the black carbon (BC) mixing state index (χ) is developed to quantify the dispersion of ambient black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC light absorption enhancement increases with χ for the same MR, which indicates that χ can be employed as a factor to constrain the light absorption enhancement of ambient BC.
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021, https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Short summary
Considering nephelometers' major problems of a nonideal Lambertian light source and angle truncation, a new correction method based on a machine learning model is proposed. Our method has the advantage of obtaining data with high accuracy while achieving self-correction, which means that researchers can get more accurate scattering coefficients without the need for additional observation data. This method provides a more precise estimation of the aerosol’s direct radiative forcing.
Tianyi Tan, Min Hu, Zhuofei Du, Gang Zhao, Dongjie Shang, Jing Zheng, Yanhong Qin, Mengren Li, Yusheng Wu, Limin Zeng, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 21, 8499–8510, https://doi.org/10.5194/acp-21-8499-2021, https://doi.org/10.5194/acp-21-8499-2021, 2021
Short summary
Short summary
Every year in the pre-monsoon season, the black carbon (BC) aerosols originated from biomass burning in southern Asia are easily transported to the Tibetan Plateau (TP) by the convenience of westerly wind. This study reveals that the BC aerosols in the aged biomass burning plumes strongly enhance the total light absorption over the TP, and the aging process during the long-range transport will further strengthen the radiative heating of those BC aerosols.
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021, https://doi.org/10.5194/amt-14-1319-2021, 2021
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, https://doi.org/10.5194/amt-14-1293-2021, 2021
Short summary
Short summary
Aerosol hygroscopicity measured by the humidified tandem differential mobility analyzer (HTDMA) is affected by multiply charged particles from two aspects: (1) number contribution and (2) the weakening effect. An algorithm is proposed to do the multi-charge correction and applied to a field measurement. Results show that the difference between corrected and measured size-resolved κ can reach 0.05, highlighting that special attention needs to be paid to the multi-charge effect when using HTDMA.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Gang Zhao, Jiangchuan Tao, Ye Kuang, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 13175–13188, https://doi.org/10.5194/acp-19-13175-2019, https://doi.org/10.5194/acp-19-13175-2019, 2019
Short summary
Short summary
Characteristics of the black carbon size distribution (BCMSD) are studied by using our developed measurement system. Results show that the BCMSDs have two modes and the mean peak diameters are 150 nm and 503 nm, respectively. The coarser mode varies significantly under different pollution conditions, which gives rise to significant variation in aerosol bulk optical properties. Our study reveals that the BCMSD as well as the mixing state in estimating aerosol radiative forcing matters.
Gang Zhao, Tianyi Tan, Weilun Zhao, Song Guo, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 12875–12885, https://doi.org/10.5194/acp-19-12875-2019, https://doi.org/10.5194/acp-19-12875-2019, 2019
Short summary
Short summary
Traditionally, the real part of the refractive index (RRI) of ambient aerosols is calculated by their chemical components. In this study, we demonstrate that the RRI is highly related to effective density rather than chemical components using field measurements. For the first time, a parameterization scheme for ambient aerosol RRI using effective density is proposed. This simple scheme is more reliable and ready to use in the calculation of aerosol optics and radiation.
Wanyun Xu, Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Gang Zhao, Yuxuan Bian, Wen Yang, Yingli Yu, Chuanyang Shen, Linlin Liang, Gen Zhang, Weili Lin, and Xiaobin Xu
Atmos. Chem. Phys., 19, 10557–10570, https://doi.org/10.5194/acp-19-10557-2019, https://doi.org/10.5194/acp-19-10557-2019, 2019
Short summary
Short summary
The study of HONO, the primary source of OH radicals, is crucial for atmospheric photochemistry and heterogeneous chemistry. Heterogeneous NO2 conversion was shown to be one of the missing sources of HONO on the North China Plain, but the reaction path is still under debate. In this work, evidence was found that NH3 was the key factor that promoted the hydrolysis of NO2, leading to the explosive growth of HONO and nitrate, suggesting that NH3 emission control measures are urgently needed.
Wangshu Tan, Gang Zhao, Yingli Yu, Chengcai Li, Jian Li, Ling Kang, Tong Zhu, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3825–3839, https://doi.org/10.5194/amt-12-3825-2019, https://doi.org/10.5194/amt-12-3825-2019, 2019
Short summary
Short summary
A new method to retrieve CCN number concentrations using multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to represent particle hygroscopicity. The retrieved CCN number concentrations are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles.
Gang Zhao, Weilun Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3541–3550, https://doi.org/10.5194/amt-12-3541-2019, https://doi.org/10.5194/amt-12-3541-2019, 2019
Short summary
Short summary
A new method is proposed to retrieve the size-resolved real part of the refractive index (RRI). The main principle of deriving the RRI is measuring the scattering intensity by a single-particle soot photometer of a size-selected aerosol. This method is validated by a series of calibration experiments using the components of the known RI. The retrieved size-resolved RRI covers a wide range, from 200 nm to 450 nm, with uncertainty of less than 0.02.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Yuxuan Bian, Jiangchuan Tao, Chuanyang Shen, and Yingli Yu
Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, https://doi.org/10.5194/acp-18-9049-2018, 2018
Short summary
Short summary
The aerosol asymmetry factor (g) is one of the most important factors for assessing direct aerosol radiative forcing (DARF) and remote sensing. So far, few studies have focused on the measurements and parameterization of g. Our study shows that relative humidity has significant impacts on g and DARF due to aerosol hygroscopic growth. For the first time, a novel method based on measurements from the humidified nephelometer system is proposed to calculate g accurately with high time resolution.
Ye Kuang, Chun Sheng Zhao, Gang Zhao, Jiang Chuan Tao, Wanyun Xu, Nan Ma, and Yu Xuan Bian
Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, https://doi.org/10.5194/amt-11-2967-2018, 2018
Short summary
Short summary
Aerosol water has become an important topic recently because of its implications for multiphase secondary aerosol formation during severe haze events in Asia. This is a timely paper on this topic; a novel method is proposed to calculate ambient aerosol liquid water contents based only on measurements of a three-wavelength humidified nephelometer system. The advantage of this method is that this technique can provide continuous measurements of the changing ambient conditions.
Jiangchuan Tao, Chunsheng Zhao, Ye Kuang, Gang Zhao, Chuanyang Shen, Yingli Yu, Yuxuan Bian, and Wanyun Xu
Atmos. Meas. Tech., 11, 895–906, https://doi.org/10.5194/amt-11-895-2018, https://doi.org/10.5194/amt-11-895-2018, 2018
Short summary
Short summary
Existing chamber technologies for direct measurements of number concentration of cloud condensation nuclei (NCCN) are sophisticated and expensive. In this paper, a new method is proposed to calculate NCCN based only on measurements of a humidified nephelometer system which have accounted for influences of both aerosol size and aerosol hygroscopicity on NCCN calculation. This new method makes NCCN measurements more convenient and is capable of obtaining NCCN at lower supersaturations.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Jiangchuan Tao, Wangshu Tan, Yuxuan Bian, Jing Li, and Chengcai Li
Atmos. Chem. Phys., 17, 12133–12143, https://doi.org/10.5194/acp-17-12133-2017, https://doi.org/10.5194/acp-17-12133-2017, 2017
Short summary
Short summary
In this paper, influences of aerosol hygroscopic growth on the lidar ratio are studied. Results indicate that both the magnitude and vertical structures of the retrieved aerosol extinction coefficient (σext) profile from lidar signals are significantly biased. This study proposes a feasible method for reducing the bias of retrieving the σext profile and this method can be implemented in operational retrieval of the aerosol σext profile and for pollution monitoring.
Yuxuan Bian, Chunsheng Zhao, Wanyun Xu, Gang Zhao, Jiangchuan Tao, and Ye Kuang
Atmos. Meas. Tech., 10, 2313–2322, https://doi.org/10.5194/amt-10-2313-2017, https://doi.org/10.5194/amt-10-2313-2017, 2017
Short summary
Short summary
Aerosol phase function is crucial for understanding the climate effects of aerosols. So far, there is a lack of instruments for measuring the aerosol phase function directly and accurately in laboratory studies and in situ measurements. A novel portable instrument with high angular range and resolution named
charge-coupled device-laser aerosol detective system(CCD-LADS) has been developed and validated for the measurement of the phase function of ambient aerosols in this study.
Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Yuxuan Bian, Nan Ma, and Gang Zhao
Atmos. Chem. Phys., 17, 6651–6662, https://doi.org/10.5194/acp-17-6651-2017, https://doi.org/10.5194/acp-17-6651-2017, 2017
Short summary
Short summary
A novel approach is proposed in this research to derive the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system without any additional information about particle number size distribution and black carbon. New findings in this research can bridge the gap between κ-Köhler theory and the aerosol light-scattering enhancement factor and will make the humidified nephelometer system more convenient when it comes to aerosol hygroscopicity research.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Hejun Hu, Haichao Wang, Keding Lu, Jie Wang, Zelong Zheng, Xuezhen Xu, Tianyu Zhai, Xiaorui Chen, Xiao Lu, Wenxing Fu, Xin Li, Limin Zeng, Min Hu, Yuanhang Zhang, and Shaojia Fan
Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, https://doi.org/10.5194/acp-23-8211-2023, 2023
Short summary
Short summary
Nitrate radical chemistry is critical to the degradation of volatile organic compounds (VOCs) and secondary organic aerosol formation. This work investigated the level, seasonal variation, and trend of nitrate radical reactivity towards volatile organic compounds (kNO3) in Beijing. We show the key role of isoprene and styrene in regulating seasonal variation in kNO3 and rebuild a long-term record of kNO3 based on the reported VOC measurements.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1401, https://doi.org/10.5194/egusphere-2023-1401, 2023
Short summary
Short summary
Many works reported NO3 chemistry in inland regions, while less targeted marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite the sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once without NO emission in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1448, https://doi.org/10.5194/egusphere-2023-1448, 2023
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2018 with expanded categories (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources) with detailed spatial and temporal assignments, and emission factors based on localized survey data. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
EGUsphere, https://doi.org/10.5194/egusphere-2023-1346, https://doi.org/10.5194/egusphere-2023-1346, 2023
Short summary
Short summary
The interplay between aerosols and moisture is one of the most crucial atmospheric processes. However, till date, the literature results on the influence of phase separation on water diffusion in aerosols are divergent. This work directly unveiled the water diffusion process in single suspended phase-separated microdroplets and quantitatively analyzed the diffusion rate and extent. The results show that diffusion limitations and certain molecule clusters exist in the phase-separated aerosols.
Guowen He, Cheng He, Haofan Wang, Xiao Lu, Chenglei Pei, Xiaonuan Qiu, Chenxi Liu, Yiming Wang, Nanxi Liu, Jinpu Zhang, Lei Lei, Yiming Liu, Haichao Wang, Tao Deng, Qi Fan, and Shaojia Fan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1043, https://doi.org/10.5194/egusphere-2023-1043, 2023
Short summary
Short summary
We analyze nighttime ozone in the lower boundary layer (up to 500 m) from the 2017–2019 measurements at the Canton Tower and the WRF-CMAQ model. We identify strong ability of the residual layer to store daytime ozone in the convective mixing layer, investigate the chemical and meteorological factors controlling nighttime ozone in the residual layer, and quantify the contribution of nighttime ozone in the residual layer to both nighttime and the following day’s surface ozone air quality.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1058, https://doi.org/10.5194/egusphere-2023-1058, 2023
Short summary
Short summary
In this study, combing comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Chengzhi Xing, Shiqi Xu, Yuhang Song, Cheng Liu, Yuhan Liu, Keding Lu, Wei Tan, Chengxin Zhang, Qihou Hu, Shanshan Wang, Hongyu Wu, and Hua Lin
Atmos. Chem. Phys., 23, 5815–5834, https://doi.org/10.5194/acp-23-5815-2023, https://doi.org/10.5194/acp-23-5815-2023, 2023
Short summary
Short summary
High RH could contribute to the secondary formation of HONO in the sea atmosphere. High temperature could promote the formation of HONO from NO2 heterogeneous reactions in the sea and coastal atmosphere. The aerosol surface plays a more important role during the above process in coastal and sea cases. The generation rate of HONO from the NO2 heterogeneous reaction in the sea cases is larger than that in inland cases in higher atmospheric layers above 600 m.
Junhua Wang, Baozhu Ge, Xueshun Chen, Jie Li, Keding Lu, Yayuan Dong, Lei Kong, Zifa Wang, and Yuanhang Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-22, https://doi.org/10.5194/gmd-2023-22, 2023
Revised manuscript under review for GMD
Short summary
Short summary
We developed a quantitative decoupling analysis (QDA) method to quantify the contributions of emissions, meteorology, chemical reactions, and their nonlinear interactions on PM2.5. We found the effects of adverse meteorological conditions and the importance of nonlinear interactions. This method can provide valuable information for understanding of key factors to heavy pollution, but also help the modelers to find out the sources of uncertainties in numerical models.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-21, https://doi.org/10.5194/acp-2023-21, 2023
Revised manuscript under review for ACP
Short summary
Short summary
Previous studies concentrated on black carbon (BC)-containing particle less than 700 nm because of technical limitation. In this study, BC-containing particle larger than 700 nm (BC>700) was measured, highlighting the importance of BC>700 to total BC mass and absorption. The contribution of BC>700 to BC direct radiative effect was estimated, highlighting the necessity to consider whole size range of BC-containing particle in the model estimation of BC radiative effect.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary
Short summary
Particulate nitrate is a growing issue in air pollution. Based on comprehensive field measurement, we show heavy nitrate pollution in eastern China in summer. OH reacting with NO2 at daytime dominates nitrate formation on clean days, while N2O5 hydrolysis largely enhances and become comparable with that of OH reacting with O2 on polluted days (67.2 % and 30.2 %). Model simulation indicates that VOC : NOx = 2 : 1 is effective in mitigating the O3 and nitrate pollution coordinately.
Shasha Tian, Kexin Zu, Huabin Dong, Limin Zeng, Keding Lu, and Qi Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-33, https://doi.org/10.5194/amt-2023-33, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
We developed an online NH3 monitoring system (SAC-LOPAP) based on Berthelot reactions and a long path absorption photometer (LOPAP), which could run statically for a long time and be applied to the continuous online measurement of low concentrations of ambient air by optimizing the reaction conditions, adding a constant temperature module and liquid flow controller, which was well suited for investigation of the NH3 budget from urban to rural conditions in China.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-840, https://doi.org/10.5194/acp-2022-840, 2023
Revised manuscript under review for ACP
Short summary
Short summary
Using simultaneous measurements of DMA-CCNC, H/VTDMA and DMA-SP2, impacts of primary emissions and secondary aerosol formations on changes of aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing state parameters derived from different techniques can help getting more insights into aerosol physical properties which in turn will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Xiaorui Chen, Haichao Wang, Tianyu Zhai, Chunmeng Li, and Keding Lu
Atmos. Meas. Tech., 15, 7019–7037, https://doi.org/10.5194/amt-15-7019-2022, https://doi.org/10.5194/amt-15-7019-2022, 2022
Short summary
Short summary
N2O5 is an important reservoir of atmospheric nitrogen, on whose interface reaction ambient particles can largely influence the fate of nitrogen oxides and air quality. In this study, we develop an approach to enable the reactions of N2O5 on ambient particles directly in a tube reactor, deriving the reaction rates with high accuracy by means of a chemistry model. Its successful application helps complement the data scarcity and to fill the knowledge gap between laboratory and field results.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Gang Zhao, Tianyi Tan, Shuya Hu, Zhuofei Du, Dongjie Shang, Zhijun Wu, Song Guo, Jing Zheng, Wenfei Zhu, Mengren Li, Limin Zeng, and Min Hu
Atmos. Chem. Phys., 22, 10861–10873, https://doi.org/10.5194/acp-22-10861-2022, https://doi.org/10.5194/acp-22-10861-2022, 2022
Short summary
Short summary
Black carbon is the second strongest absorbing component in the atmosphere that exerts warming effects on climate. One critical challenge in quantifying the ambient black carbon's radiative effects is addressing the BC microphysical properties. In this study, the microphysical properties of the aged and fresh BC particles are synthetically analyzed under different atmospheres. The measurement results can be further used in models to help constrain the uncertainties of the BC radiative effects.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022, https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Short summary
This paper presents the first OH and HO2 radical observations made in the Yangtze River Delta in China, and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanisms, monoterpene oxidation, and HO2 uptake processes are examined and discussed. The sources and the factors to sustain such strong oxidation are the key to understanding the ozone pollution formed in this area.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Xiaorui Chen, Haichao Wang, and Keding Lu
Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, https://doi.org/10.5194/acp-22-3525-2022, 2022
Short summary
Short summary
We use a complete set of simulations to evaluate whether equilibrium and steady state are appropriate for a chemical system involving several reactive nitrogen-containing species (NO2, NO3, and N2O5) under various conditions. A previously neglected bias for the coefficient applied for interpreting their effects is disclosed, and the relevant ambient factors are examined. We therefore provide a good solution to an accurate representation of nighttime chemistry in high-aerosol areas.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Wenjin Zhang, Xiaowei He, Pengfei Liu, Chenglong Zhang, Xiaoxi Zhao, Chengtang Liu, Zhuobiao Ma, Junfeng Liu, Jinhe Wang, Keding Lu, Valéry Catoire, Abdelwahid Mellouki, and Yujing Mu
Atmos. Chem. Phys., 22, 1035–1057, https://doi.org/10.5194/acp-22-1035-2022, https://doi.org/10.5194/acp-22-1035-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) and related parameters were measured at the foot and the summit of Mt. Tai in the summer of 2018. Based on measurements at the foot station, we utilized a box model to explore the roles of different sources in the HONO budget. We also studied radical chemistry in this high-ozone region.
Gang Zhao, Tianyi Tan, Yishu Zhu, Min Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, https://doi.org/10.5194/acp-21-18055-2021, 2021
Short summary
Short summary
In this study, the black carbon (BC) mixing state index (χ) is developed to quantify the dispersion of ambient black carbon aerosol mixing states based on binary systems of BC and other non-black carbon components. We demonstrate that the BC light absorption enhancement increases with χ for the same MR, which indicates that χ can be employed as a factor to constrain the light absorption enhancement of ambient BC.
Zirui Zhang, Wenfei Zhu, Min Hu, Kefan Liu, Hui Wang, Rongzhi Tang, Ruizhe Shen, Ying Yu, Rui Tan, Kai Song, Yuanju Li, Wenbin Zhang, Zhou Zhang, Hongming Xu, Shijin Shuai, Shuangde Li, Yunfa Chen, Jiayun Li, Yuesi Wang, and Song Guo
Atmos. Chem. Phys., 21, 15221–15237, https://doi.org/10.5194/acp-21-15221-2021, https://doi.org/10.5194/acp-21-15221-2021, 2021
Short summary
Short summary
We comprehensively investigated the mass growth potential, oxidation degree, formation pathway, and mass spectra features of typical urban-lifestyle secondary organic aerosols (SOAs) including vehicle SOAs and cooking SOAs. The mass spectra we acquired could provide necessary references to estimate the mass fractions of vehicle and cooking SOAs in the atmosphere, which would greatly decrease the uncertainty in air quality evaluation and health risk assessment in urban areas.
Wenfei Zhu, Song Guo, Zirui Zhang, Hui Wang, Ying Yu, Zheng Chen, Ruizhe Shen, Rui Tan, Kai Song, Kefan Liu, Rongzhi Tang, Yi Liu, Shengrong Lou, Yuanju Li, Wenbin Zhang, Zhou Zhang, Shijin Shuai, Hongming Xu, Shuangde Li, Yunfa Chen, Min Hu, Francesco Canonaco, and Andre S. H. Prévôt
Atmos. Chem. Phys., 21, 15065–15079, https://doi.org/10.5194/acp-21-15065-2021, https://doi.org/10.5194/acp-21-15065-2021, 2021
Short summary
Short summary
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban lifestyle sources (cooking and vehicles) were conducted. The mass spectral features of primary organic aerosol (POA) and SOA were characterized by using a high-resolution time-of-flight aerosol mass spectrometer. This work, for the first time, establishes the vehicle and cooking SOA source profiles and can be further used as source constraints in the OA source apportionment in the ambient atmosphere.
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021, https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Short summary
Secondary sulfate aerosols are an important component of fine particles in severe air pollution events. We calculated the sulfate formation rates via a state-of-the-art multiphase model constrained to the observed values. We showed that transition metals in urban aerosols contribute significantly to sulfate formation during haze periods and thus play an important role in mitigation strategies and public health measures in megacities worldwide.
Junhua Wang, Baozhu Ge, Xueshun Chen, Jie Li, Keding Lu, Yayuan Dong, Lei Kong, Zifa Wang, and Yuanhang Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-259, https://doi.org/10.5194/gmd-2021-259, 2021
Revised manuscript not accepted
Short summary
Short summary
This paper developed a novel quantitative decoupling analysis (QDA) method to quantify the contributions of emission, meteorology, chemical reaction, and their nonlinear interactions on PM2.5 and applied it to a pollution episode in Beijing. This method can provides the researchers and policy makers with valuable information for understanding of key factors to heavy pollution, but also help the modelers to find out the sources of uncertainties among numerical models.
Lei Li, Chao Lu, Pak-Wai Chan, Zi-Juan Lan, Wen-Hai Zhang, Hong-Long Yang, and Hai-Chao Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-579, https://doi.org/10.5194/acp-2021-579, 2021
Revised manuscript not accepted
Short summary
Short summary
The COVID-19 induced lockdown provided a time-window to study the impact of emission decrease on atmospheric environment. A 350 m meteorological tower in the Pearl River Delta recorded the vertical distribution of pollutants during the lockdown period. The observation confirmed that an extreme emission reduction, can reduce the concentrations of fine particles and the peak concentration of ozone at the same time, which had been taken as difficult to realize in the past in many regions.
Yu Wang, Aristeidis Voliotis, Yunqi Shao, Taomou Zong, Xiangxinyue Meng, Mao Du, Dawei Hu, Ying Chen, Zhijun Wu, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 11303–11316, https://doi.org/10.5194/acp-21-11303-2021, https://doi.org/10.5194/acp-21-11303-2021, 2021
Short summary
Short summary
Aerosol phase behaviour plays a profound role in atmospheric physicochemical processes. We designed dedicated chamber experiments to study the phase state of secondary organic aerosol from biogenic and anthropogenic mixed precursors. Our results highlight the key role of the organic–inorganic ratio and relative humidity in phase state, but the sources and organic composition are less important. The result provides solid laboratory evidence for understanding aerosol phase in a complex atmosphere.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021, https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Short summary
Considering nephelometers' major problems of a nonideal Lambertian light source and angle truncation, a new correction method based on a machine learning model is proposed. Our method has the advantage of obtaining data with high accuracy while achieving self-correction, which means that researchers can get more accurate scattering coefficients without the need for additional observation data. This method provides a more precise estimation of the aerosol’s direct radiative forcing.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Tianyi Tan, Min Hu, Zhuofei Du, Gang Zhao, Dongjie Shang, Jing Zheng, Yanhong Qin, Mengren Li, Yusheng Wu, Limin Zeng, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 21, 8499–8510, https://doi.org/10.5194/acp-21-8499-2021, https://doi.org/10.5194/acp-21-8499-2021, 2021
Short summary
Short summary
Every year in the pre-monsoon season, the black carbon (BC) aerosols originated from biomass burning in southern Asia are easily transported to the Tibetan Plateau (TP) by the convenience of westerly wind. This study reveals that the BC aerosols in the aged biomass burning plumes strongly enhance the total light absorption over the TP, and the aging process during the long-range transport will further strengthen the radiative heating of those BC aerosols.
Chunmeng Li, Haichao Wang, Xiaorui Chen, Tianyu Zhai, Shiyi Chen, Xin Li, Limin Zeng, and Keding Lu
Atmos. Meas. Tech., 14, 4033–4051, https://doi.org/10.5194/amt-14-4033-2021, https://doi.org/10.5194/amt-14-4033-2021, 2021
Short summary
Short summary
We present a feasible instrument for the measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. The instrument samples sequentially from three channels at different temperature settings and then measures spectra using one cavity-enhanced absorption spectrometer. The concentrations are determined by spectral fitting and corrected using the lookup table method conveniently. The instrument will promote the study of PNs and ANs.
Kai Song, Song Guo, Haichao Wang, Ying Yu, Hui Wang, Rongzhi Tang, Shiyong Xia, Yuanzheng Gong, Zichao Wan, Daqi Lv, Rui Tan, Wenfei Zhu, Ruizhe Shen, Xin Li, Xuena Yu, Shiyi Chen, Liming Zeng, and Xiaofeng Huang
Atmos. Chem. Phys., 21, 7917–7932, https://doi.org/10.5194/acp-21-7917-2021, https://doi.org/10.5194/acp-21-7917-2021, 2021
Short summary
Short summary
Nitrated phenols (NPs) are crucial components of brown carbon. To comprehend the constitutes and sources of NPs in winter of Beijing, their concentrations were measured by a CI-LToF-MS. The secondary formation process was simulated by a box model. NPs were mainly influenced by primary emissions and regional transport. Primary emitted phenol rather than benzene oxidation was crucial in the heavy pollution episode in Beijing. This provides more insight into pollution control strategies of NPs.
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Short summary
Due to their lower diffusion capacities and higher conversion capacities, urban areas in Xi’an experienced severe ozone pollution in the summer. In this study, a campaign of comprehensive field observations and VOC grid sampling was conducted in Xi’an from 20 June to 20 July 2019. We found that Xi'an has a strong local emission source of VOCs, and vehicle exhaust was the primary VOC source. In addition, alkenes, aromatics, and oxygenated VOCs played a dominant role in secondary transformations.
Laurent Poulain, Benjamin Fahlbusch, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Zhijun Wu, Yoshiteru Iinuma, Wolfram Birmili, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 3667–3684, https://doi.org/10.5194/acp-21-3667-2021, https://doi.org/10.5194/acp-21-3667-2021, 2021
Short summary
Short summary
We present results from source apportionment analysis on the carbonaceous aerosol particles, including organic aerosol (OA) and equivalent black carbon (eBC), allowing us to distinguish local emissions from long-range transport for OA and eBC sources. By merging online chemical measurements and considering particle number size distribution, the different air masses reaching the sampling place were described and discussed, based on their respective chemical composition and size distribution.
Jingchuan Chen, Zhijun Wu, Jie Chen, Naama Reicher, Xin Fang, Yinon Rudich, and Min Hu
Atmos. Chem. Phys., 21, 3491–3506, https://doi.org/10.5194/acp-21-3491-2021, https://doi.org/10.5194/acp-21-3491-2021, 2021
Short summary
Short summary
Asian mineral dust is a crucial contributor to global ice-nucleating particles (INPs), while its size-resolved information on freezing activity is extremely rare. Here we conducted the first known INP measurements of size-resolved airborne East Asian dust particles. An explicit size dependence of both INP concentration and surface
ice-active-site density was observed. The new parameterizations can be widely applied in models to better characterize and predict ice nucleation activities of dust.
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021, https://doi.org/10.5194/amt-14-1319-2021, 2021
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, https://doi.org/10.5194/amt-14-1293-2021, 2021
Short summary
Short summary
Aerosol hygroscopicity measured by the humidified tandem differential mobility analyzer (HTDMA) is affected by multiply charged particles from two aspects: (1) number contribution and (2) the weakening effect. An algorithm is proposed to do the multi-charge correction and applied to a field measurement. Results show that the difference between corrected and measured size-resolved κ can reach 0.05, highlighting that special attention needs to be paid to the multi-charge effect when using HTDMA.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Christian Mark Garcia Salvador, Rongzhi Tang, Michael Priestley, Linjie Li, Epameinondas Tsiligiannis, Michael Le Breton, Wenfei Zhu, Limin Zeng, Hui Wang, Ying Yu, Min Hu, Song Guo, and Mattias Hallquist
Atmos. Chem. Phys., 21, 1389–1406, https://doi.org/10.5194/acp-21-1389-2021, https://doi.org/10.5194/acp-21-1389-2021, 2021
Short summary
Short summary
High-frequency online measurement of gas- and particle-phase nitro-aromatic compounds (NACs) at a rural site in China, heavily influenced by biomass burning events, enabled the analysis of the production pathway of NACs, including an explanation of strong persistence in the daytime. The contribution of secondary processes was significant, even during the dominant wintertime influence of primary emissions, suggesting the important role of regional secondary chemistry, i.e. photochemical smog.
Huan Song, Xiaorui Chen, Keding Lu, Qi Zou, Zhaofeng Tan, Hendrik Fuchs, Alfred Wiedensohler, Daniel R. Moon, Dwayne E. Heard, María-Teresa Baeza-Romero, Mei Zheng, Andreas Wahner, Astrid Kiendler-Scharr, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020, https://doi.org/10.5194/acp-20-15835-2020, 2020
Short summary
Short summary
Accurate calculation of the HO2 uptake coefficient is one of the key parameters to quantify the co-reduction of both aerosol and ozone pollution. We modelled various lab measurements of γHO2 based on a gas-liquid phase kinetic model and developed a state-of-the-art parameterized equation. Based on a dataset from a comprehensive field campaign in the North China Plain, we proposed that the determination of the heterogeneous uptake process for HO2 should be included in future field campaigns.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Yujue Wang, Min Hu, Nan Xu, Yanhong Qin, Zhijun Wu, Liwu Zeng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 20, 13721–13734, https://doi.org/10.5194/acp-20-13721-2020, https://doi.org/10.5194/acp-20-13721-2020, 2020
Short summary
Short summary
Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood. In this study, we designed lab-controlled experiments to comprehensively investigate the emission factors, chemical compositions and light absorption properties of both water-soluble and water-insoluble carbonaceous aerosols emitted from straw burning. The results clearly highlight the significant influences of burning conditions and combustion efficiency on the emissions.
Ruqian Miao, Qi Chen, Yan Zheng, Xi Cheng, Yele Sun, Paul I. Palmer, Manish Shrivastava, Jianping Guo, Qiang Zhang, Yuhan Liu, Zhaofeng Tan, Xuefei Ma, Shiyi Chen, Limin Zeng, Keding Lu, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 12265–12284, https://doi.org/10.5194/acp-20-12265-2020, https://doi.org/10.5194/acp-20-12265-2020, 2020
Short summary
Short summary
In this study we evaluated the model performances for simulating secondary inorganic aerosol (SIA) and organic aerosol (OA) in PM2.5 in China against comprehensive datasets. The potential biases from factors related to meteorology, emission, chemistry, and atmospheric removal are systematically investigated. This study provides a comprehensive understanding of modeling PM2.5, which is important for studies on the effectiveness of emission control strategies.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Jian Zhang, Lei Liu, Liang Xu, Qiuhan Lin, Hujia Zhao, Zhibin Wang, Song Guo, Min Hu, Dantong Liu, Zongbo Shi, Dao Huang, and Weijun Li
Atmos. Chem. Phys., 20, 5355–5372, https://doi.org/10.5194/acp-20-5355-2020, https://doi.org/10.5194/acp-20-5355-2020, 2020
Short summary
Short summary
Northeast China faces severe air pollution in regional haze in wintertime. In this study, we revealed a contrasting formation mechanism of two typical haze events: Haze-I was induced by adverse meteorological conditions together with residential coal burning emissions; Haze-II was caused by agricultural biomass waste burning. In particular, we observed large numbers of tar balls as the primary brown carbon in northeast China.
Chuan Yu, Zhe Wang, Men Xia, Xiao Fu, Weihao Wang, Yee Jun Tham, Tianshu Chen, Penggang Zheng, Hongyong Li, Ye Shan, Xinfeng Wang, Likun Xue, Yan Zhou, Dingli Yue, Yubo Ou, Jian Gao, Keding Lu, Steven S. Brown, Yuanhang Zhang, and Tao Wang
Atmos. Chem. Phys., 20, 4367–4378, https://doi.org/10.5194/acp-20-4367-2020, https://doi.org/10.5194/acp-20-4367-2020, 2020
Short summary
Short summary
This study provides a holistic picture of N2O5 heterogeneous uptake on ambient aerosols and the influencing factors under various climatic and chemical conditions in China, and it proposes an observation-based empirical parameterization. The empirical parameterization can be used in air quality models to improve the prediction of PM2.5 and photochemical pollution in China and similar polluted regions of the world.
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Jiaoping Xing, Longyi Shao, Wenbin Zhang, Jianfei Peng, Wenhua Wang, Shijin Shuai, Min Hu, and Daizhou Zhang
Atmos. Chem. Phys., 20, 2781–2794, https://doi.org/10.5194/acp-20-2781-2020, https://doi.org/10.5194/acp-20-2781-2020, 2020
Short summary
Short summary
Our results highlight the contribution of gasoline-direct-injection (GDI) vehicles to aerosols, both primary and secondary. The major particles from GDI vehicles are organic and soot particles; they actively participate in chemical conversions in the atmosphere, leading to morphology and composition changes in hours. Rapid ageing could be attributable to the acid-catalysed mechanism and high concentrations of gaseous pollutants. These results would be beneficial for control of PM2.5 pollution.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Yu Wang, Ying Chen, Zhijun Wu, Dongjie Shang, Yuxuan Bian, Zhuofei Du, Sebastian H. Schmitt, Rong Su, Georgios I. Gkatzelis, Patrick Schlag, Thorsten Hohaus, Aristeidis Voliotis, Keding Lu, Limin Zeng, Chunsheng Zhao, M. Rami Alfarra, Gordon McFiggans, Alfred Wiedensohler, Astrid Kiendler-Scharr, Yuanhang Zhang, and Min Hu
Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, https://doi.org/10.5194/acp-20-2161-2020, 2020
Short summary
Short summary
Severe haze events, with high particulate nitrate (pNO3−) burden, frequently prevail in Beijing. In this study, we demonstrate a mutual-promotion effect between aerosol water uptake and pNO3− formation backed up by theoretical calculations and field observations throughout a typical pNO3−-dominated haze event in Beijing wintertime. This self-amplified mutual-promotion effect between aerosol water content and particulate nitrate can rapidly deteriorate air quality and degrade visibility.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Misti Levy Zamora, Jianfei Peng, Min Hu, Song Guo, Wilmarie Marrero-Ortiz, Dongjie Shang, Jing Zheng, Zhuofei Du, Zhijun Wu, and Renyi Zhang
Atmos. Chem. Phys., 19, 14329–14338, https://doi.org/10.5194/acp-19-14329-2019, https://doi.org/10.5194/acp-19-14329-2019, 2019
Short summary
Short summary
Severe haze formation in Beijing during wintertime is attributed to explosive secondary aerosol formation including particle nucleation and subsequent particle growth. Organic matter is responsible for producing nucleation mode particles, while secondary organic and inorganic components jointly contribute to the high aerosol mass during haze episodes. High levels of gaseous precursors and stagnant air mass are responsible for fast secondary aerosol formation.
Gang Zhao, Jiangchuan Tao, Ye Kuang, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 13175–13188, https://doi.org/10.5194/acp-19-13175-2019, https://doi.org/10.5194/acp-19-13175-2019, 2019
Short summary
Short summary
Characteristics of the black carbon size distribution (BCMSD) are studied by using our developed measurement system. Results show that the BCMSDs have two modes and the mean peak diameters are 150 nm and 503 nm, respectively. The coarser mode varies significantly under different pollution conditions, which gives rise to significant variation in aerosol bulk optical properties. Our study reveals that the BCMSD as well as the mixing state in estimating aerosol radiative forcing matters.
Gang Zhao, Tianyi Tan, Weilun Zhao, Song Guo, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 19, 12875–12885, https://doi.org/10.5194/acp-19-12875-2019, https://doi.org/10.5194/acp-19-12875-2019, 2019
Short summary
Short summary
Traditionally, the real part of the refractive index (RRI) of ambient aerosols is calculated by their chemical components. In this study, we demonstrate that the RRI is highly related to effective density rather than chemical components using field measurements. For the first time, a parameterization scheme for ambient aerosol RRI using effective density is proposed. This simple scheme is more reliable and ready to use in the calculation of aerosol optics and radiation.
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Yanhua Fang, Chunxiang Ye, Junxia Wang, Yusheng Wu, Min Hu, Weili Lin, Fanfan Xu, and Tong Zhu
Atmos. Chem. Phys., 19, 12295–12307, https://doi.org/10.5194/acp-19-12295-2019, https://doi.org/10.5194/acp-19-12295-2019, 2019
Short summary
Short summary
Year-long observations of PM2.5, gaseous pollutants, and meteorological parameters in Beijing were analysed to investigate sulfate formation. RH and O3 concentrations above thresholds of 45 % and 35 ppb, respectively, greatly accelerated sulfate formation. Ambient changes in RH and O3 contributed to variations in sulfate formation among different seasons and pollution levels. A shift from gas-phase to multiphase SO2 oxidation contributed to fast sulfate formation under polluted conditions.
Lia Chatzidiakou, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, Teng Wang, Hanbin Zhang, Qi Wang, Yunfei Fan, Shiyi Chen, Min Hu, Jennifer K. Quint, Benjamin Barratt, Frank J. Kelly, Tong Zhu, and Roderic L. Jones
Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, https://doi.org/10.5194/amt-12-4643-2019, 2019
Short summary
Short summary
This study validates the performance of a personal air quality monitor that integrates miniaturised sensors that measure physical and chemical parameters. Overall, the air pollution sensors showed excellent agreement with standard instrumentation in outdoor, indoor and commuting environments across seasons and different geographical settings. Hence, novel sensing technologies like the ones demonstrated here can revolutionise health studies by providing highly resolved reliable exposure metrics.
Wanyun Xu, Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Gang Zhao, Yuxuan Bian, Wen Yang, Yingli Yu, Chuanyang Shen, Linlin Liang, Gen Zhang, Weili Lin, and Xiaobin Xu
Atmos. Chem. Phys., 19, 10557–10570, https://doi.org/10.5194/acp-19-10557-2019, https://doi.org/10.5194/acp-19-10557-2019, 2019
Short summary
Short summary
The study of HONO, the primary source of OH radicals, is crucial for atmospheric photochemistry and heterogeneous chemistry. Heterogeneous NO2 conversion was shown to be one of the missing sources of HONO on the North China Plain, but the reaction path is still under debate. In this work, evidence was found that NH3 was the key factor that promoted the hydrolysis of NO2, leading to the explosive growth of HONO and nitrate, suggesting that NH3 emission control measures are urgently needed.
Jingwei Liu, Xin Li, Yiming Yang, Haichao Wang, Yusheng Wu, Xuewei Lu, Mindong Chen, Jianlin Hu, Xiaobo Fan, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 12, 4439–4453, https://doi.org/10.5194/amt-12-4439-2019, https://doi.org/10.5194/amt-12-4439-2019, 2019
Short summary
Short summary
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has been proven to be a reliable method for measuring glyoxal and methylglyoxal in the atmosphere. However, the commonly overlying strong spectral absorption of nitrogen dioxide hampers the accurate and sensitive resolve of the weak absorption features of glyoxal and methylglyoxal. Here, we report a custom-built IBBCEAS system that could overcome this problem by quantitatively removing nitrogen dioxide from the sample air.
Wenjie Wang, Xin Li, Min Shao, Min Hu, Limin Zeng, Yusheng Wu, and Tianyi Tan
Atmos. Chem. Phys., 19, 9413–9429, https://doi.org/10.5194/acp-19-9413-2019, https://doi.org/10.5194/acp-19-9413-2019, 2019
Short summary
Short summary
We quantitatively evaluated the relationship between photolysis frequencies and AOD based on 4 years of observational data in Beijing. This study concludes that the influence of aerosol on photolysis frequencies and thus on the rate of oxidation of VOCs and NOx to ozone is important for determining the atmospheric effects of controlling the precursor emissions of these two important air pollutants (aerosols and ozone).
Wangshu Tan, Gang Zhao, Yingli Yu, Chengcai Li, Jian Li, Ling Kang, Tong Zhu, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3825–3839, https://doi.org/10.5194/amt-12-3825-2019, https://doi.org/10.5194/amt-12-3825-2019, 2019
Short summary
Short summary
A new method to retrieve CCN number concentrations using multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to represent particle hygroscopicity. The retrieved CCN number concentrations are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Gang Zhao, Weilun Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 12, 3541–3550, https://doi.org/10.5194/amt-12-3541-2019, https://doi.org/10.5194/amt-12-3541-2019, 2019
Short summary
Short summary
A new method is proposed to retrieve the size-resolved real part of the refractive index (RRI). The main principle of deriving the RRI is measuring the scattering intensity by a single-particle soot photometer of a size-selected aerosol. This method is validated by a series of calibration experiments using the components of the known RI. The retrieved size-resolved RRI covers a wide range, from 200 nm to 450 nm, with uncertainty of less than 0.02.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Yujue Wang, Min Hu, Yuchen Wang, Jing Zheng, Dongjie Shang, Yudong Yang, Ying Liu, Xiao Li, Rongzhi Tang, Wenfei Zhu, Zhuofei Du, Yusheng Wu, Song Guo, Zhijun Wu, Shengrong Lou, Mattias Hallquist, and Jian Zhen Yu
Atmos. Chem. Phys., 19, 7649–7665, https://doi.org/10.5194/acp-19-7649-2019, https://doi.org/10.5194/acp-19-7649-2019, 2019
Short summary
Short summary
Nitro-aromatic compounds (NACs), an important fraction in brown carbon, were comprehensively characterized in Beijing. The oxidation of anthropogenic VOCs represented more dominant sources of NACs than biomass burning. A transition of NO2 from low- to high-NOx regimes was observed. The contribution of aqueous-phase pathways to NAC formation increased at elevated RH. This work highlights secondary formation of NACs and influence factors in high NOx–anthropogenic VOC-dominated urban atmospheres.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Zhaofeng Tan, Keding Lu, Andreas Hofzumahaus, Hendrik Fuchs, Birger Bohn, Frank Holland, Yuhan Liu, Franz Rohrer, Min Shao, Kang Sun, Yusheng Wu, Limin Zeng, Yinsong Zhang, Qi Zou, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 19, 7129–7150, https://doi.org/10.5194/acp-19-7129-2019, https://doi.org/10.5194/acp-19-7129-2019, 2019
Short summary
Short summary
Atmospheric OH, HO2, and RO2 radicals; OH reactivity; and trace gases measured in the Pearl River Delta in autumn 2014 are used for radical budget analyses. The RO2 budget suggests that unexplained OH reactivity is due to unmeasured volatile organic compounds. The OH budget points to a missing OH source and that of RO2 to a missing RO2 sink at low NO. This could indicate a common, unknown process that converts RO2 to OH without the involvement of NO, which would reduce ozone production by 30 %.
Zhenying Xu, Mingxu Liu, Minsi Zhang, Yu Song, Shuxiao Wang, Lin Zhang, Tingting Xu, Tiantian Wang, Caiqing Yan, Tian Zhou, Yele Sun, Yuepeng Pan, Min Hu, Mei Zheng, and Tong Zhu
Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, https://doi.org/10.5194/acp-19-5605-2019, 2019
Zhaofeng Tan, Keding Lu, Meiqing Jiang, Rong Su, Hongli Wang, Shengrong Lou, Qingyan Fu, Chongzhi Zhai, Qinwen Tan, Dingli Yue, Duohong Chen, Zhanshan Wang, Shaodong Xie, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, https://doi.org/10.5194/acp-19-3493-2019, 2019
Short summary
Short summary
We evaluated the atmospheric oxidation capacity (AOC) in four Chinese megacities during photochemically polluted seasons. The chemical production of ozone and particle nitrate was diagnosed through a box model, which can be attributed to daytime radical chemistry. Our work highlights that the formation of both ozone and fine particles is largely driven by the atmospheric radical chemistry in China. Consequently, we suggest future pollution mitigation strategies should consider the role of AOC.
Liya Guo, Wenjun Gu, Chao Peng, Weigang Wang, Yong Jie Li, Taomou Zong, Yujing Tang, Zhijun Wu, Qinhao Lin, Maofa Ge, Guohua Zhang, Min Hu, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, https://doi.org/10.5194/acp-19-2115-2019, 2019
Short summary
Short summary
In this work, hygroscopic properties of eight Ca- and Mg-containing salts were systematically investigated using two complementary techniques. The results largely improve our knowledge of the physicochemical properties of mineral dust and sea salt aerosols.
Shan Huang, Zhijun Wu, Laurent Poulain, Manuela van Pinxteren, Maik Merkel, Denise Assmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 18, 18043–18062, https://doi.org/10.5194/acp-18-18043-2018, https://doi.org/10.5194/acp-18-18043-2018, 2018
Short summary
Short summary
The Atlantic aerosols are characterized based on high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurements during four open-ocean cruises. This unique data set provides the latitudinal distribution of source contributions of organic aerosols (OAs) over the Atlantic Ocean, showing that marine sources could control the OA formation over the South Atlantic, while strong continental influence was found near Africa and Europe.
Mingxu Liu, Xin Huang, Yu Song, Tingting Xu, Shuxiao Wang, Zhijun Wu, Min Hu, Lin Zhang, Qiang Zhang, Yuepeng Pan, Xuejun Liu, and Tong Zhu
Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, https://doi.org/10.5194/acp-18-17933-2018, 2018
Dongjie Shang, Min Hu, Jing Zheng, Yanhong Qin, Zhuofei Du, Mengren Li, Jingyao Fang, Jianfei Peng, Yusheng Wu, Sihua Lu, and Song Guo
Atmos. Chem. Phys., 18, 15687–15703, https://doi.org/10.5194/acp-18-15687-2018, https://doi.org/10.5194/acp-18-15687-2018, 2018
Short summary
Short summary
Biomass burning (BB) activities have a great impact on the particle number size distribution in the upper troposphere of the Tibetan Plateau (TP), which could affect regional and global climate. We found that the cloud condensation nuclei concentration was 2–8 times higher during BB influenced periods than during clean periods on the TP. An unexpectedly low new particle formation frequency was found in clean atmosphere on the TP, due to low concentrations of anthropogenic precursors, i.e., SO2.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Yee Jun Tham, Zhe Wang, Qinyi Li, Weihao Wang, Xinfeng Wang, Keding Lu, Nan Ma, Chao Yan, Simonas Kecorius, Alfred Wiedensohler, Yuanhang Zhang, and Tao Wang
Atmos. Chem. Phys., 18, 13155–13171, https://doi.org/10.5194/acp-18-13155-2018, https://doi.org/10.5194/acp-18-13155-2018, 2018
Short summary
Short summary
This study addresses the limited understanding of heterogeneous N2O5 uptake and ClNO2 production in the polluted environment of China. The results showed that N2O5 uptake and ClNO2 yield cannot be well explained by previous parameterizations and were largely influenced by factors like aerosol water content and biomass burning emission. Our findings illuminate the need to realistically parameterize these heterogeneous processes for better simulation of photochemical and haze pollution in China.
Michael Le Breton, Åsa M. Hallquist, Ravi Kant Pathak, David Simpson, Yujue Wang, John Johansson, Jing Zheng, Yudong Yang, Dongjie Shang, Haichao Wang, Qianyun Liu, Chak Chan, Tao Wang, Thomas J. Bannan, Michael Priestley, Carl J. Percival, Dudley E. Shallcross, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, https://doi.org/10.5194/acp-18-13013-2018, 2018
Short summary
Short summary
We apply state-of-the-art chemical characterization to determine the chloride radical production in Beijing via measurement of inorganic halogens at a semi-rural site. The high concentration of inorganic halogens, namely nitryl chloride, enables the production of chlorinated volatile organic compounds which are measured in both the gas and particle phases simultaneously. This enables the secondary production of aerosols via chlorine oxidation to be directly observed in ambient air.
Zhaofeng Tan, Franz Rohrer, Keding Lu, Xuefei Ma, Birger Bohn, Sebastian Broch, Huabin Dong, Hendrik Fuchs, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Yuhan Liu, Anna Novelli, Min Shao, Haichao Wang, Yusheng Wu, Limin Zeng, Min Hu, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, https://doi.org/10.5194/acp-18-12391-2018, 2018
Short summary
Short summary
We present the first wintertime OH, HO2, and RO2 measurements in Beijing, China. OH concentrations are nearly 2-fold larger than those observed in foreign cities during wintertime. The high OH and large OH reactivities indicate photochemical processes can be effective even during wintertime. A box model largely underestimated HO2 and RO2 concentrations during pollution episodes correlated with high NOx, indicating a deficit current chemistry in the high NOx regime.
Xiao-Feng Huang, Bei-Bing Zou, Ling-Yan He, Min Hu, André S. H. Prévôt, and Yuan-Hang Zhang
Atmos. Chem. Phys., 18, 11563–11580, https://doi.org/10.5194/acp-18-11563-2018, https://doi.org/10.5194/acp-18-11563-2018, 2018
Short summary
Short summary
A novel multilinear engine (ME-2) model was applied to the PM2.5 dataset observed in the Pearl River Delta (PRD) of China in 2015 and identified the sources of secondary sulfate (21 %), vehicle emissions (14 %), industrial emissions (13 %), secondary nitrate (11 %), biomass burning (11 %), secondary organic aerosol (7 %), coal burning (6 %), fugitive dust (5 %), ship emissions (3 %) and aged sea salt (2 %). The central PRD area was clearly identified as the key emission area in the PRD.
Jun Duan, Min Qin, Bin Ouyang, Wu Fang, Xin Li, Keding Lu, Ke Tang, Shuaixi Liang, Fanhao Meng, Zhaokun Hu, Pinhua Xie, Wenqing Liu, and Rolf Häsler
Atmos. Meas. Tech., 11, 4531–4543, https://doi.org/10.5194/amt-11-4531-2018, https://doi.org/10.5194/amt-11-4531-2018, 2018
Short summary
Short summary
We report a custom-built instrument for simultaneous unambiguous measurements of HONO and NO2 based on incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). The current IBBCEAS instrument has made significant improvements in terms of efficient sampling as well as resistance against vibration; temperature change and the measurement precisions (2σ) for HONO are about 180 and 340 ppt in 30 s, respectively. The field inter-comparison and the mobile measurements are present.
Yujue Wang, Min Hu, Song Guo, Yuchen Wang, Jing Zheng, Yudong Yang, Wenfei Zhu, Rongzhi Tang, Xiao Li, Ying Liu, Michael Le Breton, Zhuofei Du, Dongjie Shang, Yusheng Wu, Zhijun Wu, Yu Song, Shengrong Lou, Mattias Hallquist, and Jianzhen Yu
Atmos. Chem. Phys., 18, 10693–10713, https://doi.org/10.5194/acp-18-10693-2018, https://doi.org/10.5194/acp-18-10693-2018, 2018
Short summary
Short summary
The overall characteristics and concentrations of organosulfates (OSs) and nitrooxy-OSs (NOSs) were determined in summer in Beijing. This study provided direct observational evidence that OSs form via acid-catalyzed aqueous-phase reactions in the presence of acidic sulfate aerosols, and monoterpene NOSs form via nighttime NO3 oxidation. Using OSs and NOSs as examples, this work highlights the formation pathways of SOA via anthropogenic–biogenic interactions and organic–inorganic reactions.
Haichao Wang, Keding Lu, Xiaorui Chen, Qindan Zhu, Zhijun Wu, Yusheng Wu, and Kang Sun
Atmos. Chem. Phys., 18, 10483–10495, https://doi.org/10.5194/acp-18-10483-2018, https://doi.org/10.5194/acp-18-10483-2018, 2018
Short summary
Short summary
The vertical measurement of NOx and O3 was carried out on a movable carriage on a tower during a winter heavy-haze episode in urban Beijing, China. We found that pNO3- formation via N2O5 uptake was significant at high altitudes (e.g., > 150 m), which was supported by the lower total oxidant
(NO2 + O3) level at high altitudes than at ground level. This study highlights the fact that pNO3- formation via N2O5 uptake may be an important source of pNO3- in the urban airshed during wintertime.
Michael Le Breton, Yujue Wang, Åsa M. Hallquist, Ravi Kant Pathak, Jing Zheng, Yudong Yang, Dongjie Shang, Marianne Glasius, Thomas J. Bannan, Qianyun Liu, Chak K. Chan, Carl J. Percival, Wenfei Zhu, Shengrong Lou, David Topping, Yuchen Wang, Jianzhen Yu, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 10355–10371, https://doi.org/10.5194/acp-18-10355-2018, https://doi.org/10.5194/acp-18-10355-2018, 2018
Short summary
Short summary
This paper utilizes a chemical ionisation mass spectrometer measuring gas and particle-phase organosulfates (OS) simultaneously during a field campaign in Beijing, China, and highlights how high time frequency online measurements enable a detailed analysis of dominant production mechanisms. We find that high aerosol acidity, organic precursor concentration and relative humidity promote the production of OS. The thermogram desorption reveals the potential for semi-volatile gas-phase OS.
Haichao Wang, Keding Lu, Song Guo, Zhijun Wu, Dongjie Shang, Zhaofeng Tan, Yujue Wang, Michael Le Breton, Shengrong Lou, Mingjin Tang, Yusheng Wu, Wenfei Zhu, Jing Zheng, Limin Zeng, Mattias Hallquist, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 9705–9721, https://doi.org/10.5194/acp-18-9705-2018, https://doi.org/10.5194/acp-18-9705-2018, 2018
Short summary
Short summary
N2O5, ClNO2, and particulate nitrate were measured simultaneously in Beijing, China, in 2016. The elevated N2O5 uptake coefficient and ClNO2 yield were determined, which suggest fast N2O5 uptake in Beijing. We highlight that the NO3 oxidation in nocturnal VOC degradation is efficient, with fast formation of organic nitrates. More studies are needed to investigate NO3–N2O5 chemistry and its contribution to secondary organic aerosol formation.
Zhuofei Du, Min Hu, Jianfei Peng, Wenbin Zhang, Jing Zheng, Fangting Gu, Yanhong Qin, Yudong Yang, Mengren Li, Yusheng Wu, Min Shao, and Shijin Shuai
Atmos. Chem. Phys., 18, 9011–9023, https://doi.org/10.5194/acp-18-9011-2018, https://doi.org/10.5194/acp-18-9011-2018, 2018
Short summary
Short summary
By combining approaches involving chassis dynamometer measurements and environmental chamber simulations, we find that gasoline direct injection (GDI) vehicles contribute more primary aerosol and secondary organic aerosol than port fuel injection (PFI) vehicles. Our results highlight the considerable potential contribution of GDI vehicles to urban air pollution, since the market share of GDI vehicles will dominate over that of PFI vehicles in the future.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Yuxuan Bian, Jiangchuan Tao, Chuanyang Shen, and Yingli Yu
Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, https://doi.org/10.5194/acp-18-9049-2018, 2018
Short summary
Short summary
The aerosol asymmetry factor (g) is one of the most important factors for assessing direct aerosol radiative forcing (DARF) and remote sensing. So far, few studies have focused on the measurements and parameterization of g. Our study shows that relative humidity has significant impacts on g and DARF due to aerosol hygroscopic growth. For the first time, a novel method based on measurements from the humidified nephelometer system is proposed to calculate g accurately with high time resolution.
Congbo Song, Yan Liu, Shida Sun, Luna Sun, Yanjie Zhang, Chao Ma, Jianfei Peng, Qian Li, Jinsheng Zhang, Qili Dai, Baoshuang Liu, Peng Wang, Yi Zhang, Ting Wang, Lin Wu, Min Hu, and Hongjun Mao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-387, https://doi.org/10.5194/acp-2018-387, 2018
Revised manuscript not accepted
Short summary
Short summary
Vehicular emission is a key contributor to ambient volatile organic compounds (VOCs) and NOx in Chinese megacities. Information on real-world emission factors (EFs) for a typical urban fleet is still limited. We found that improvement of fuel quality can significantly reduce feet-average EFs of VOCs (especially for BTEX). Our study provided implications for O3 control in China from the view of primary emission, and highlighted the importance of further control of evaporative emissions.
Ye Kuang, Chun Sheng Zhao, Gang Zhao, Jiang Chuan Tao, Wanyun Xu, Nan Ma, and Yu Xuan Bian
Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, https://doi.org/10.5194/amt-11-2967-2018, 2018
Short summary
Short summary
Aerosol water has become an important topic recently because of its implications for multiphase secondary aerosol formation during severe haze events in Asia. This is a timely paper on this topic; a novel method is proposed to calculate ambient aerosol liquid water contents based only on measurements of a three-wavelength humidified nephelometer system. The advantage of this method is that this technique can provide continuous measurements of the changing ambient conditions.
Liwei Wang, Xinfeng Wang, Rongrong Gu, Hao Wang, Lan Yao, Liang Wen, Fanping Zhu, Weihao Wang, Likun Xue, Lingxiao Yang, Keding Lu, Jianmin Chen, Tao Wang, Yuanghang Zhang, and Wenxing Wang
Atmos. Chem. Phys., 18, 4349–4359, https://doi.org/10.5194/acp-18-4349-2018, https://doi.org/10.5194/acp-18-4349-2018, 2018
Short summary
Short summary
This study presents concentrations, variation characteristics, sources and secondary formations of nitrated phenols, a major component of brown carbon, in typical seasons at four sites in northern China. The results highlight the strong influences and contributions of anthropogenic activities, in particular coal combustion and the aging processes, to the atmospheric nitrated phenols in this region.
Rongzhi Tang, Zepeng Wu, Xiao Li, Yujue Wang, Dongjie Shang, Yao Xiao, Mengren Li, Limin Zeng, Zhijun Wu, Mattias Hallquist, Min Hu, and Song Guo
Atmos. Chem. Phys., 18, 4055–4068, https://doi.org/10.5194/acp-18-4055-2018, https://doi.org/10.5194/acp-18-4055-2018, 2018
Short summary
Short summary
We used CMB and the tracer yield method to apportion organic sources in Beijing. Vehicular emissions served as the dominant source, and the contributions of all the other primary sources decreased. One interesting result is that in contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing.
Jie Chen, Zhijun Wu, Stefanie Augustin-Bauditz, Sarah Grawe, Markus Hartmann, Xiangyu Pei, Zirui Liu, Dongsheng Ji, and Heike Wex
Atmos. Chem. Phys., 18, 3523–3539, https://doi.org/10.5194/acp-18-3523-2018, https://doi.org/10.5194/acp-18-3523-2018, 2018
Short summary
Short summary
The ice nucleation activity of urban aerosols in the atmosphere of Beijing was detected in this study. Results showed that ice-nucleating particle (INP) concentrations were not influenced by the highly variable numbers of atmospheric particles, both in mass and particle number concentrations, implying that INP concentrations might not be influenced directly by anthropogenic activities, at least not down to roughly −25 °C and maybe even below.
Jing Li, Chengcai Li, and Chunsheng Zhao
Atmos. Chem. Phys., 18, 3289–3298, https://doi.org/10.5194/acp-18-3289-2018, https://doi.org/10.5194/acp-18-3289-2018, 2018
Short summary
Short summary
Our study investigates the long-term trends of extreme aerosol pollution in China over the past ~ 30 years. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for Northwest China and the North China Plain. In the 1990s, the extreme trends continued to dominate in the south while they yield to the mean trend in the north. After 2000, the extreme trend became weaker than the mean trend overall.
Jiangchuan Tao, Chunsheng Zhao, Ye Kuang, Gang Zhao, Chuanyang Shen, Yingli Yu, Yuxuan Bian, and Wanyun Xu
Atmos. Meas. Tech., 11, 895–906, https://doi.org/10.5194/amt-11-895-2018, https://doi.org/10.5194/amt-11-895-2018, 2018
Short summary
Short summary
Existing chamber technologies for direct measurements of number concentration of cloud condensation nuclei (NCCN) are sophisticated and expensive. In this paper, a new method is proposed to calculate NCCN based only on measurements of a humidified nephelometer system which have accounted for influences of both aerosol size and aerosol hygroscopicity on NCCN calculation. This new method makes NCCN measurements more convenient and is capable of obtaining NCCN at lower supersaturations.
Li-Ming Cao, Xiao-Feng Huang, Yuan-Yuan Li, Min Hu, and Ling-Yan He
Atmos. Chem. Phys., 18, 1729–1743, https://doi.org/10.5194/acp-18-1729-2018, https://doi.org/10.5194/acp-18-1729-2018, 2018
Short summary
Short summary
A TD-AMS (thermodenuder aerosol mass spectrometer) system was deployed to study the volatility of non-refractory PM1 species during winter in Shenzhen, China. The volatility of chemical species measured with the AMS varied, with nitrate showing the highest volatility. Organics showed semi-volatile characteristics, and five subtypes of OA resolved by PMF modeling presented different volatilities. The results can contribute to the understanding of the formation and ageing of submicron aerosols.
Pengfei Liang, Tong Zhu, Yanhua Fang, Yingruo Li, Yiqun Han, Yusheng Wu, Min Hu, and Junxia Wang
Atmos. Chem. Phys., 17, 13921–13940, https://doi.org/10.5194/acp-17-13921-2017, https://doi.org/10.5194/acp-17-13921-2017, 2017
Short summary
Short summary
The generalized linear regression model (GLM), even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and hence the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 % and 28 % to the reduction of the PM2.5 concentration during APEC 2014 and 38 % and 25 % during Parade 2015.
Gang Zhao, Chunsheng Zhao, Ye Kuang, Jiangchuan Tao, Wangshu Tan, Yuxuan Bian, Jing Li, and Chengcai Li
Atmos. Chem. Phys., 17, 12133–12143, https://doi.org/10.5194/acp-17-12133-2017, https://doi.org/10.5194/acp-17-12133-2017, 2017
Short summary
Short summary
In this paper, influences of aerosol hygroscopic growth on the lidar ratio are studied. Results indicate that both the magnitude and vertical structures of the retrieved aerosol extinction coefficient (σext) profile from lidar signals are significantly biased. This study proposes a feasible method for reducing the bias of retrieving the σext profile and this method can be implemented in operational retrieval of the aerosol σext profile and for pollution monitoring.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Jianfei Peng, Min Hu, Zhuofei Du, Yinhui Wang, Jing Zheng, Wenbin Zhang, Yudong Yang, Yanhong Qin, Rong Zheng, Yao Xiao, Yusheng Wu, Sihua Lu, Zhijun Wu, Song Guo, Hongjun Mao, and Shijin Shuai
Atmos. Chem. Phys., 17, 10743–10752, https://doi.org/10.5194/acp-17-10743-2017, https://doi.org/10.5194/acp-17-10743-2017, 2017
Short summary
Short summary
Through an environmental chamber approach, we find that a small increase in aromatic content in gasoline fuel will result in a large enhancement in the secondary organic aerosol formation from vehicle exhaust. The higher emissions of both monocyclic and polycyclic aromatic organic compounds from the high-aromatic fuel played an essential role. Our findings highlight the importance of more stringent regulation of gasoline aromatic content for air quality in urban areas.
Qingfeng Guo, Min Hu, Song Guo, Zhijun Wu, Jianfei Peng, and Yusheng Wu
Atmos. Chem. Phys., 17, 10395–10403, https://doi.org/10.5194/acp-17-10395-2017, https://doi.org/10.5194/acp-17-10395-2017, 2017
Short summary
Short summary
To characterize primary emissions over the eastern coast of China, a series of field campaigns were conducted. The high loadings of both BC and CO implied severe anthropogenic pollution over the areas. The slopes between BC and CO at different areas revealed the vehicular emission as the common source and the distinct fuel structures between North and South China. The comparisons of slopes and correlation coefficient among these areas can indicate the aging extent of BC at the macroscopic level.
Jianfei Peng, Min Hu, Song Guo, Zhuofei Du, Dongjie Shang, Jing Zheng, Jun Zheng, Limin Zeng, Min Shao, Yusheng Wu, Don Collins, and Renyi Zhang
Atmos. Chem. Phys., 17, 10333–10348, https://doi.org/10.5194/acp-17-10333-2017, https://doi.org/10.5194/acp-17-10333-2017, 2017
Short summary
Short summary
Rapid growth of BC particles was observed in Beijing using a new outdoor chamber, with an average growth rate of 26 ± 11 nm h−1. Secondary organic aerosol (SOA) accounted for more than 90 % of the coating mass. The hygroscopic growth factor of BC particles increased to 1.06–1.08 upon ageing. The κ (kappa) values for BC particles were calculated as only 0.035, indicating that initial photochemical ageing of BC particles does not appreciably alter the particle hygroscopicity in Beijing.
Wei Hu, Min Hu, Wei-Wei Hu, Jing Zheng, Chen Chen, Yusheng Wu, and Song Guo
Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, https://doi.org/10.5194/acp-17-9979-2017, 2017
Short summary
Short summary
Seasonal changes in chemical compositions, sources, and evolution for submicron aerosols in the megacity Beijing were investigated based on high-resolution AMS measurements. Carbonaceous fraction (OA+BC) constituted over 50 % of PM1 in autumn due to primary emissions, while SNA contributed 60 % to PM1 in other seasons. Secondary components (OOA+SNA) contributed ~ 60–80 % to PM1, suggesting that secondary formation played an important role in PM pollution. OA was in a relatively high oxidation state.
Yuxuan Bian, Chunsheng Zhao, Wanyun Xu, Gang Zhao, Jiangchuan Tao, and Ye Kuang
Atmos. Meas. Tech., 10, 2313–2322, https://doi.org/10.5194/amt-10-2313-2017, https://doi.org/10.5194/amt-10-2313-2017, 2017
Short summary
Short summary
Aerosol phase function is crucial for understanding the climate effects of aerosols. So far, there is a lack of instruments for measuring the aerosol phase function directly and accurately in laboratory studies and in situ measurements. A novel portable instrument with high angular range and resolution named
charge-coupled device-laser aerosol detective system(CCD-LADS) has been developed and validated for the measurement of the phase function of ambient aerosols in this study.
Yudong Yang, Min Shao, Stephan Keßel, Yue Li, Keding Lu, Sihua Lu, Jonathan Williams, Yuanhang Zhang, Liming Zeng, Anke C. Nölscher, Yusheng Wu, Xuemei Wang, and Junyu Zheng
Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, https://doi.org/10.5194/acp-17-7127-2017, 2017
Short summary
Short summary
Total OH reactivity is an important parameter to evaluate understanding of atmospheric chemistry, especially the VOC contribution to air pollution. Measured by comparative reactivity methods, total OH reactivity in Beijing and Heshan revealed significant differences between measured and calculated results, such as missing reactivity, which were related to unmeasured primary or secondary species. This missing reactivity would introduce a 21–30 % underestimation for ozone production efficiency.
Jing Zheng, Min Hu, Zhuofei Du, Dongjie Shang, Zhaoheng Gong, Yanhong Qin, Jingyao Fang, Fangting Gu, Mengren Li, Jianfei Peng, Jie Li, Yuqia Zhang, Xiaofeng Huang, Lingyan He, Yusheng Wu, and Song Guo
Atmos. Chem. Phys., 17, 6853–6864, https://doi.org/10.5194/acp-17-6853-2017, https://doi.org/10.5194/acp-17-6853-2017, 2017
Short summary
Short summary
By monitoring aerosol properties as a function of high-resolution chemical composition, this study sheds light on the evolution processes of particles in the Tibetan Plateau background environment during the pre-monsoon season. A positive matrix factorization analysis integrated with a mesoscale meteorological model clearly shows that the southeastern edge of the Tibetan Plateau was affected by air pollutants transported from active biomass burning areas in South Asia.
Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Yuxuan Bian, Nan Ma, and Gang Zhao
Atmos. Chem. Phys., 17, 6651–6662, https://doi.org/10.5194/acp-17-6651-2017, https://doi.org/10.5194/acp-17-6651-2017, 2017
Short summary
Short summary
A novel approach is proposed in this research to derive the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system without any additional information about particle number size distribution and black carbon. New findings in this research can bridge the gap between κ-Köhler theory and the aerosol light-scattering enhancement factor and will make the humidified nephelometer system more convenient when it comes to aerosol hygroscopicity research.
Huan Yao, Yu Song, Mingxu Liu, Scott Archer-Nicholls, Douglas Lowe, Gordon McFiggans, Tingting Xu, Pin Du, Jianfeng Li, Yusheng Wu, Min Hu, Chun Zhao, and Tong Zhu
Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, https://doi.org/10.5194/acp-17-5205-2017, 2017
Haichao Wang, Jun Chen, and Keding Lu
Atmos. Meas. Tech., 10, 1465–1479, https://doi.org/10.5194/amt-10-1465-2017, https://doi.org/10.5194/amt-10-1465-2017, 2017
Short summary
Short summary
A new incoherent broadband cavity-enhanced absorption spectrometer for ambient NO3 and N2O5 detection is developed. This new instrument is featured with a mechanically aligned non-adjustable optical mounting system. Fast setup and stable running of this N2O5 spectrometer were successfully achieved during recent field campaigns in China due to this new feature. In addition, a dynamic reference spectrum is used for the CEAS type of instrument by NO titration for the first time.
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Zhaofeng Tan, Hendrik Fuchs, Keding Lu, Andreas Hofzumahaus, Birger Bohn, Sebastian Broch, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinsong Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, https://doi.org/10.5194/acp-17-663-2017, 2017
Short summary
Short summary
In this study, we performed accurate OH measurements as well as selective HO2 and RO2 measurements at a rural site in North China Plain with state-of-the-art instruments newly developed. We confirmed the previous discovery on the enhancement of the OH in low NOx with which little O3 production was associated, and we found a missing RO2 source in high NOx which promoted higher O3 production. Our results are of vital importance for ozone abatement strategies currently under discussion for China.
Hendrik Fuchs, Zhaofeng Tan, Keding Lu, Birger Bohn, Sebastian Broch, Steven S. Brown, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Kyung-Eun Min, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinson Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 645–661, https://doi.org/10.5194/acp-17-645-2017, https://doi.org/10.5194/acp-17-645-2017, 2017
Short summary
Short summary
OH reactivity was measured during a 1-month long campaign at a rural site in the North China Plain in 2014. OH reactivity measurements are compared to calculations using OH reactant measurements. Good agreement is found indicating that all important OH reactants were measured. In addition, the chemical OH budget is analyzed. In contrast to previous campaigns in China in 2006, no significant imbalance between OH production and destruction is found.
Yee Jun Tham, Zhe Wang, Qinyi Li, Hui Yun, Weihao Wang, Xinfeng Wang, Likun Xue, Keding Lu, Nan Ma, Birger Bohn, Xin Li, Simonas Kecorius, Johannes Größ, Min Shao, Alfred Wiedensohler, Yuanhang Zhang, and Tao Wang
Atmos. Chem. Phys., 16, 14959–14977, https://doi.org/10.5194/acp-16-14959-2016, https://doi.org/10.5194/acp-16-14959-2016, 2016
Short summary
Short summary
This work addresses the unclear global significance of chlorine activation processes in the troposphere. The first high-quality measurement data set of ClNO2 in northern China revealed strong ClNO2 production in the residual layers, and demonstrated its significant effects on radical budget and ozone production. Our findings imply the widespread effects of ClNO2 over the polluted regions of northern China, which may increase photochemical and haze pollution.
Wei Hu, Min Hu, Wei-Wei Hu, Hongya Niu, Jing Zheng, Yusheng Wu, Wentai Chen, Chen Chen, Lingyu Li, Min Shao, Shaodong Xie, and Yuanhang Zhang
Atmos. Chem. Phys., 16, 13213–13230, https://doi.org/10.5194/acp-16-13213-2016, https://doi.org/10.5194/acp-16-13213-2016, 2016
Short summary
Short summary
An Aerodyne high-resolution time-of-flight AMS was deployed at a suburban site in the Sichuan Basin, southwestern China, under high emission intensity, and unique geographical and adverse meteorological conditions. OA was the most abundant component (36 %) in PM1, characterized by a relatively high oxidation state. The contributions of BBOA and BC to PM1 were high in primary emission episodes, highlighting the critical influence of biomass burning.
Yin Wang, Zhongming Chen, Qinqin Wu, Hao Liang, Liubin Huang, Huan Li, Keding Lu, Yusheng Wu, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 16, 10985–11000, https://doi.org/10.5194/acp-16-10985-2016, https://doi.org/10.5194/acp-16-10985-2016, 2016
Short summary
Short summary
Comparison of modeled and measured peroxide concentrations at a rural site in the summer North China Plain demonstrated an underestimation during biomass burning events and an overestimation on haze days, which were related to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. Our findings are of great significance for comprehensively understanding the chemical budget of atmospheric peroxides in detail.
B. Quennehen, J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S. Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu
Atmos. Chem. Phys., 16, 10765–10792, https://doi.org/10.5194/acp-16-10765-2016, https://doi.org/10.5194/acp-16-10765-2016, 2016
Short summary
Short summary
This paper evaluates the ability of six global models and one regional model in reproducing short-lived pollutants (defined here as ozone and its precursors, aerosols and black carbon) concentrations over Asia using satellite, ground-based and airborne observations.
Key findings are that models homogeneously reproduce the trace gas observations although nitrous oxides are underestimated, whereas the aerosol distributions are heterogeneously reproduced, implicating important uncertainties.
Qiao Zhu, Ling-Yan He, Xiao-Feng Huang, Li-Ming Cao, Zhao-Heng Gong, Chuan Wang, Xin Zhuang, and Min Hu
Atmos. Chem. Phys., 16, 10283–10297, https://doi.org/10.5194/acp-16-10283-2016, https://doi.org/10.5194/acp-16-10283-2016, 2016
Short summary
Short summary
An high-resolution time-of-flight aerosol mass spectrometer, together with other relevant instruments, was deployed at two of China's national background sites in northern and southern China in the spring season, in order to characterize submicron aerosol composition and sources. The findings indicated that possible sources might not only include emissions from the Chinese mainland but also include emissions from ocean-going cargo ships and biomass burning in neighboring countries.
Nan Ma, Chunsheng Zhao, Jiangchuan Tao, Zhijun Wu, Simonas Kecorius, Zhibin Wang, Johannes Größ, Hongjian Liu, Yuxuan Bian, Ye Kuang, Monique Teich, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Hartmut Herrmann, Min Hu, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, https://doi.org/10.5194/acp-16-8593-2016, 2016
Short summary
Short summary
New particle formation (NPF) is one of main sources of cloud condensation nuclei (CCN) in the atmosphere. Based on in situ measurements, we found that CCN activity of newly formed particles largely differs in different NPF events. It is therefore difficult to find a simple parameterization of CCN activity for NPF events. Using a fixed size-resolved activation ratio curve or critical diameter is very likely to result in large biases up to 50 % in the calculated NCCN during NPF events.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
K.-E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown
Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, https://doi.org/10.5194/amt-9-423-2016, 2016
Short summary
Short summary
We have developed a two-channel broadband cavity enhanced absorption spectrometer for field measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO, and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s, with accuracy of 5.8, 9.0 and 5.0 %.
Z. J. Wu, J. Zheng, D. J. Shang, Z. F. Du, Y. S. Wu, L. M. Zeng, A. Wiedensohler, and M. Hu
Atmos. Chem. Phys., 16, 1123–1138, https://doi.org/10.5194/acp-16-1123-2016, https://doi.org/10.5194/acp-16-1123-2016, 2016
Short summary
Short summary
Most pre-existing measurements lack a linkage between particle hygroscopicity and chemical composition with a high time resolution in China. Our work provided a general overview of particle hygroscopicity and its closure with chemical composition on the basis of HTDMA and AMS measurements. An increase in particle hygroscopicity with increasing air pollution level was found, as well as a quick transformation from external mixtures to internal mixtures for pre-existing particles during NPF events.
Z. J. Wu, L. Poulain, W. Birmili, J. Größ, N. Niedermeier, Z. B. Wang, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 15, 13071–13083, https://doi.org/10.5194/acp-15-13071-2015, https://doi.org/10.5194/acp-15-13071-2015, 2015
W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez
Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, https://doi.org/10.5194/acp-15-11807-2015, 2015
Short summary
Short summary
This work summarized all the studies reporting isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) measured globally by aerosol mass spectrometer and compare them with modeled gas-phase IEPOX, with results suggestive of the importance of IEPOX-SOA for regional and global OA budgets. A real-time tracer of IEPOX-SOA is thoroughly evaluated for the first time by combing multiple field and chamber studies. A quick and easy empirical method on IEPOX-SOA estimation is also presented.
Y. R. Yang, X. G. Liu, Y. Qu, J. L. An, R. Jiang, Y. H. Zhang, Y. L. Sun, Z. J. Wu, F. Zhang, W. Q. Xu, and Q. X. Ma
Atmos. Chem. Phys., 15, 8165–8178, https://doi.org/10.5194/acp-15-8165-2015, https://doi.org/10.5194/acp-15-8165-2015, 2015
Y. Kuang, C. S. Zhao, J. C. Tao, and N. Ma
Atmos. Chem. Phys., 15, 5761–5772, https://doi.org/10.5194/acp-15-5761-2015, https://doi.org/10.5194/acp-15-5761-2015, 2015
Short summary
Short summary
In this paper, it is found that the diurnal variations of single scattering albedo (SSA) and asymmetry factor (g) for ambient aerosol are both evident and far different from those of dry state aerosol in the North China Plain (NCP. The diurnal changes of SSA and g have significant impacts on the estimation of daily average direct aerosol radiative effect (DARE) at the top of the atmosphere. In addition, several suggestions are proposed to improve the accurate prediction of DARE in the NCP.
J. Huang, H. Liu, J. H. Crawford, C. Chan, D. B. Considine, Y. Zhang, X. Zheng, C. Zhao, V. Thouret, S. J. Oltmans, S. C. Liu, D. B. A. Jones, S. D. Steenrod, and M. R. Damon
Atmos. Chem. Phys., 15, 5161–5179, https://doi.org/10.5194/acp-15-5161-2015, https://doi.org/10.5194/acp-15-5161-2015, 2015
Short summary
Short summary
High ozone concentrations (up to 94.7ppbv) were frequently observed at an altitude of ~1.5--2km over Beijing during April--May 2005. Ozone due to Asian anthropogenic pollution made major contributions to the observed ozone enhancements. These enhancements typically occurred under southerly wind and warmer conditions. An earlier onset of the Asian summer monsoon would cause more ozone enhancement events in the lower troposphere over the North China Plain in late spring and early summer.
Y. Liu, B. Yuan, X. Li, M. Shao, S. Lu, Y. Li, C.-C. Chang, Z. Wang, W. Hu, X. Huang, L. He, L. Zeng, M. Hu, and T. Zhu
Atmos. Chem. Phys., 15, 3045–3062, https://doi.org/10.5194/acp-15-3045-2015, https://doi.org/10.5194/acp-15-3045-2015, 2015
M. Wang, M. Shao, W. Chen, S. Lu, Y. Liu, B. Yuan, Q. Zhang, Q. Zhang, C.-C. Chang, B. Wang, L. Zeng, M. Hu, Y. Yang, and Y. Li
Atmos. Chem. Phys., 15, 1489–1502, https://doi.org/10.5194/acp-15-1489-2015, https://doi.org/10.5194/acp-15-1489-2015, 2015
J. Kaiser, G. M. Wolfe, B. Bohn, S. Broch, H. Fuchs, L. N. Ganzeveld, S. Gomm, R. Häseler, A. Hofzumahaus, F. Holland, J. Jäger, X. Li, I. Lohse, K. Lu, A. S. H. Prévôt, F. Rohrer, R. Wegener, R. Wolf, T. F. Mentel, A. Kiendler-Scharr, A. Wahner, and F. N. Keutsch
Atmos. Chem. Phys., 15, 1289–1298, https://doi.org/10.5194/acp-15-1289-2015, https://doi.org/10.5194/acp-15-1289-2015, 2015
Short summary
Short summary
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show that VOC oxidation alone cannot account for the formaldehyde concentrations observed in the morning over rural Italy. Vertical profiles suggest a ground-level source of HCHO. Incorporating this additional HCHO source into a photochemical model increases calculated O3 production by as much as 12%.
X. Li, F. Rohrer, T. Brauers, A. Hofzumahaus, K. Lu, M. Shao, Y. H. Zhang, and A. Wahner
Atmos. Chem. Phys., 14, 12291–12305, https://doi.org/10.5194/acp-14-12291-2014, https://doi.org/10.5194/acp-14-12291-2014, 2014
J. C. Tao, C. S. Zhao, N. Ma, and P. F. Liu
Atmos. Chem. Phys., 14, 12055–12067, https://doi.org/10.5194/acp-14-12055-2014, https://doi.org/10.5194/acp-14-12055-2014, 2014
G. Q. Fu, W. Y. Xu, R. F. Yang, J. B. Li, and C. S. Zhao
Atmos. Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, https://doi.org/10.5194/acp-14-11949-2014, 2014
R. Dlugi, M. Berger, M. Zelger, A. Hofzumahaus, F. Rohrer, F. Holland, K. Lu, and G. Kramm
Atmos. Chem. Phys., 14, 10333–10362, https://doi.org/10.5194/acp-14-10333-2014, https://doi.org/10.5194/acp-14-10333-2014, 2014
J. F. Peng, M. Hu, Z. B. Wang, X. F. Huang, P. Kumar, Z. J. Wu, S. Guo, D. L. Yue, D. J. Shang, Z. Zheng, and L. Y. He
Atmos. Chem. Phys., 14, 10249–10265, https://doi.org/10.5194/acp-14-10249-2014, https://doi.org/10.5194/acp-14-10249-2014, 2014
J. Chen, C. S. Zhao, N. Ma, and P. Yan
Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, https://doi.org/10.5194/acp-14-8105-2014, 2014
H. Fuchs, I.-H. Acir, B. Bohn, T. Brauers, H.-P. Dorn, R. Häseler, A. Hofzumahaus, F. Holland, M. Kaminski, X. Li, K. Lu, A. Lutz, S. Nehr, F. Rohrer, R. Tillmann, R. Wegener, and A. Wahner
Atmos. Chem. Phys., 14, 7895–7908, https://doi.org/10.5194/acp-14-7895-2014, https://doi.org/10.5194/acp-14-7895-2014, 2014
W. Y. Xu, C. S. Zhao, L. Ran, W. L. Lin, P. Yan, and X. B. Xu
Atmos. Chem. Phys., 14, 7757–7768, https://doi.org/10.5194/acp-14-7757-2014, https://doi.org/10.5194/acp-14-7757-2014, 2014
Y. X. Bian, C. S. Zhao, N. Ma, J. Chen, and W. Y. Xu
Atmos. Chem. Phys., 14, 6417–6426, https://doi.org/10.5194/acp-14-6417-2014, https://doi.org/10.5194/acp-14-6417-2014, 2014
N. Ma, W. Birmili, T. Müller, T. Tuch, Y. F. Cheng, W. Y. Xu, C. S. Zhao, and A. Wiedensohler
Atmos. Chem. Phys., 14, 6241–6259, https://doi.org/10.5194/acp-14-6241-2014, https://doi.org/10.5194/acp-14-6241-2014, 2014
Q. Zhang, B. Yuan, M. Shao, X. Wang, S. Lu, K. Lu, M. Wang, L. Chen, C.-C. Chang, and S. C. Liu
Atmos. Chem. Phys., 14, 6089–6101, https://doi.org/10.5194/acp-14-6089-2014, https://doi.org/10.5194/acp-14-6089-2014, 2014
K. D. Lu, F. Rohrer, F. Holland, H. Fuchs, T. Brauers, A. Oebel, R. Dlugi, M. Hu, X. Li, S. R. Lou, M. Shao, T. Zhu, A. Wahner, Y. H. Zhang, and A. Hofzumahaus
Atmos. Chem. Phys., 14, 4979–4999, https://doi.org/10.5194/acp-14-4979-2014, https://doi.org/10.5194/acp-14-4979-2014, 2014
H. J. Liu, C. S. Zhao, B. Nekat, N. Ma, A. Wiedensohler, D. van Pinxteren, G. Spindler, K. Müller, and H. Herrmann
Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014, https://doi.org/10.5194/acp-14-2525-2014, 2014
Z. B. Wang, M. Hu, J. Y. Sun, Z. J. Wu, D. L. Yue, X. J. Shen, Y. M. Zhang, X. Y. Pei, Y. F. Cheng, and A. Wiedensohler
Atmos. Chem. Phys., 13, 12495–12506, https://doi.org/10.5194/acp-13-12495-2013, https://doi.org/10.5194/acp-13-12495-2013, 2013
Z. B. Wang, M. Hu, D. Mogensen, D. L. Yue, J. Zheng, R. Y. Zhang, Y. Liu, B. Yuan, X. Li, M. Shao, L. Zhou, Z. J. Wu, A. Wiedensohler, and M. Boy
Atmos. Chem. Phys., 13, 11157–11167, https://doi.org/10.5194/acp-13-11157-2013, https://doi.org/10.5194/acp-13-11157-2013, 2013
Z. B. Wang, M. Hu, Z. J. Wu, D. L. Yue, L. Y. He, X. F. Huang, X. G. Liu, and A. Wiedensohler
Atmos. Chem. Phys., 13, 10159–10170, https://doi.org/10.5194/acp-13-10159-2013, https://doi.org/10.5194/acp-13-10159-2013, 2013
W. W. Hu, M. Hu, B. Yuan, J. L. Jimenez, Q. Tang, J. F. Peng, W. Hu, M. Shao, M. Wang, L. M. Zeng, Y. S. Wu, Z. H. Gong, X. F. Huang, and L. Y. He
Atmos. Chem. Phys., 13, 10095–10112, https://doi.org/10.5194/acp-13-10095-2013, https://doi.org/10.5194/acp-13-10095-2013, 2013
B. Yuan, W. W. Hu, M. Shao, M. Wang, W. T. Chen, S. H. Lu, L. M. Zeng, and M. Hu
Atmos. Chem. Phys., 13, 8815–8832, https://doi.org/10.5194/acp-13-8815-2013, https://doi.org/10.5194/acp-13-8815-2013, 2013
S. Guo, M. Hu, Q. Guo, X. Zhang, J. J. Schauer, and R. Zhang
Atmos. Chem. Phys., 13, 8303–8314, https://doi.org/10.5194/acp-13-8303-2013, https://doi.org/10.5194/acp-13-8303-2013, 2013
Y. P. Li, H. Elbern, K. D. Lu, E. Friese, A. Kiendler-Scharr, Th. F. Mentel, X. S. Wang, A. Wahner, and Y. H. Zhang
Atmos. Chem. Phys., 13, 6289–6304, https://doi.org/10.5194/acp-13-6289-2013, https://doi.org/10.5194/acp-13-6289-2013, 2013
Z. Z. Deng, C. S. Zhao, N. Ma, L. Ran, G. Q. Zhou, D. R. Lu, and X. J. Zhou
Atmos. Chem. Phys., 13, 6227–6237, https://doi.org/10.5194/acp-13-6227-2013, https://doi.org/10.5194/acp-13-6227-2013, 2013
Z. B. Wang, M. Hu, Z. J. Wu, D. L. Yue, J. Zheng, R. Y. Zhang, X. Y. Pei, P. Paasonen, M. Dal Maso, M. Boy, and A. Wiedensohler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-3419-2013, https://doi.org/10.5194/acpd-13-3419-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Physicochemical characterization and source apportionment of Arctic ice-nucleating particles observed in Ny-Ålesund in autumn 2019
Cyclones enhance the transport of sea spray aerosols to the high atmosphere in the Southern Ocean
Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe
New particle formation in the tropical free troposphere during CAMP2Ex: statistics and impact of emission sources, convective activity, and synoptic conditions
Explaining apparent particle shrinkage related to new particle formation events in western Saudi Arabia does not require evaporation
Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance
Characterization of dust-related new particle formation events based on long-term measurement in the North China Plain
Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer
The variation in the particle number size distribution during the rainfall: wet scavenging and air mass changing
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline
Characterization of size-segregated particles' turbulent flux and deposition velocity by eddy correlation method at an Arctic site
Vertical distribution of black carbon and its mixing state in the urban boundary layer in summer
Insights into the size-resolved dust emission from field measurements in the Moroccan Sahara
A new method for the quantification of ambient particulate-matter emission fluxes
Measurement report: The 4-year variability and influence of the Winter Olympics and other special events on air quality in urban Beijing during wintertime
Black carbon content of traffic emissions significantly impacts black carbon mass size distributions and mixing states
Measurement Report: Wintertime new particle formation in the rural area of the North China Plain – influencing factors and possible formation mechanism
Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
3D assimilation and radiative impact assessment of aerosol black carbon over the Indian region using aircraft, balloon, ground-based, and multi-satellite observations
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean
Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden
New particle formation leads to enhanced cloud condensation nuclei concentrations at Antarctic Peninsula
Measurement report: High Arctic aerosol hygroscopicity at sub- and supersaturated conditions during spring and summer
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges at different environments and in the atmosphere
Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations
Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
The density of ambient black carbon retrieved by a new method: implications for cloud condensation nuclei prediction
Evaluation of aerosol- and gas-phase tracers for identification of transported biomass burning emissions in an industrially influenced location in Texas, USA
Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols
Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze
Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 — light-extinction, CCN, and INP levels from the boundary layer to the tropopause
Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Mixing state and effective density of aerosol particles during the Beijing 2022 Olympic Winter Games
Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin
Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
Quantified effect of seawater biogeochemistry on the temperature dependence of sea spray aerosol fluxes
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Jun Shi, Jinpei Yan, Shanshan Wang, Shuhui Zhao, Miming Zhang, Suqing Xu, Qi Lin, Hang Yang, and Siying Dai
Atmos. Chem. Phys., 23, 10349–10359, https://doi.org/10.5194/acp-23-10349-2023, https://doi.org/10.5194/acp-23-10349-2023, 2023
Short summary
Short summary
An underway aerosol-monitoring system was used to determine the Na+ concentration during different cyclone periods in the Southern Ocean in order to assess the potential effects of cyclones on sea spray aerosol (SSA) emissions. It was estimated that more than 23 % of SSAs were transported upwards during cyclone periods. Vertically transported SSAs can be regarded as an important source of CCN and hence have an effect on climate in the middle and high latitudes of the Southern Hemisphere.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Marco Zanatta, Stephan Mertes, Olivier Jourdan, Regis Dupuy, Emma Järvinen, Martin Schnaiter, Oliver Eppers, Johannes Schneider, Zsófia Jurányi, and Andreas Herber
Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023, https://doi.org/10.5194/acp-23-7955-2023, 2023
Short summary
Short summary
Black carbon (BC) particles influence the Arctic radiative balance. Vertical measurements of black carbon were conducted during the ACLOUD campaign in the European Arctic to study the interaction of BC with clouds. This study shows that clouds influence the vertical variability of BC properties across the inversion layer and that multiple activation and transformation mechanisms of BC may occur in the presence of low-level, persistent, mixed-phase clouds.
Guangdong Niu, Ximeng Qi, Liangduo Chen, Lian Xue, Shiyi Lai, Xin Huang, Jiaping Wang, Xuguang Chi, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 23, 7521–7534, https://doi.org/10.5194/acp-23-7521-2023, https://doi.org/10.5194/acp-23-7521-2023, 2023
Short summary
Short summary
The reported below-cloud wet-scavenging coefficients (BWSCs) are much higher than theoretical data, but the reason remains unclear. Based on long-term observation, we find that air mass changing during rainfall events causes the overestimation of BWSCs. Thus, the discrepancy in BWSCs between observation and theory is not as large as currently believed. To obtain reasonable BWSCs and parameterizations from field observations, the effect of air mass changes needs to be considered.
Katherine L. Ackerman, Alison D. Nugent, and Chung Taing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1387, https://doi.org/10.5194/egusphere-2023-1387, 2023
Short summary
Short summary
Sea salt aerosol is an important marine aerosol and may be produced in greater quantities in coastal regions than over the open-ocean. This study observed these aerosols along the windward coastline of O'ahu, Hawaii to understand how wind and waves influence the production and dispersal of these particles. Overall, wave heights were more strongly correlated to changes in aerosol concentrations, but wind speeds played an important role in their dispersal and vertical mixing.
Antonio Donateo, Gianluca Pappaccogli, Daniela Famulari, Mauro Mazzola, Federico Scoto, and Stefano Decesari
Atmos. Chem. Phys., 23, 7425–7445, https://doi.org/10.5194/acp-23-7425-2023, https://doi.org/10.5194/acp-23-7425-2023, 2023
Short summary
Short summary
This work aims to measure the turbulent fluxes and the dry deposition velocity for size-segregated particles (from ultrafine to quasi-coarse range) at an Arctic site (Svalbard). Aiming to characterize the effect of surface properties on dry deposition, continuous observations were performed from the coldest months (on snow surface) to the snow melting period and throughout the summer (snow-free surface). A data fit of the deposition velocity as a function of particle diameters will be provided.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 7177–7212, https://doi.org/10.5194/acp-23-7177-2023, https://doi.org/10.5194/acp-23-7177-2023, 2023
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth's system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Stergios Vratolis, Evangelia Diapouli, Manousos I. Manousakas, Susana Marta Almeida, Ivan Beslic, Zsofia Kertesz, Lucyna Samek, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 6941–6961, https://doi.org/10.5194/acp-23-6941-2023, https://doi.org/10.5194/acp-23-6941-2023, 2023
Short summary
Short summary
Using a dataset from 16 European and Asian cities we develop a new method so as to identify and quantify the emission fluxes from each geographic grid cell for secondary sulfate and dust aerosol. The information provided by the new method allows the implementation of targeted mitigation measures. The new method could be applied to several other pollutants (e.g., black carbon).
Yishuo Guo, Chenjuan Deng, Aino Ovaska, Feixue Zheng, Chenjie Hua, Junlei Zhan, Yiran Li, Jin Wu, Zongcheng Wang, Jiali Xie, Ying Zhang, Tingyu Liu, Yusheng Zhang, Boying Song, Wei Ma, Yongchun Liu, Chao Yan, Jingkun Jiang, Veli-Matti Kerminen, Men Xia, Tuomo Nieminen, Wei Du, Tom Kokkonen, and Markku Kulmala
Atmos. Chem. Phys., 23, 6663–6690, https://doi.org/10.5194/acp-23-6663-2023, https://doi.org/10.5194/acp-23-6663-2023, 2023
Short summary
Short summary
Using the comprehensive datasets, we investigated the long-term variations of air pollutants during winter in Beijing from 2019 to 2022 and analyzed the characteristics of atmospheric pollution cocktail during different short-term special events (e.g., Beijing Winter Olympics, COVID lockdown and Chinese New Year) associated with substantial emission reductions. Our results are useful in planning more targeted and sustainable long-term pollution control plans.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
Atmos. Chem. Phys., 23, 6545–6558, https://doi.org/10.5194/acp-23-6545-2023, https://doi.org/10.5194/acp-23-6545-2023, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Xinyao Hu, Junying Sun, Can Xia, Xiaojing Shen, Yangmei Zhang, Quan Liu, Zhaodong Liu, Sinan Zhang, Jialing Wang, Aoyuan Yu, Jiayuan Lu, Shuo Liu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 5517–5531, https://doi.org/10.5194/acp-23-5517-2023, https://doi.org/10.5194/acp-23-5517-2023, 2023
Short summary
Short summary
The simultaneous measurements under dry conditions of aerosol optical properties were conducted at three wavelengths for PM1 and PM10 in urban Beijing from 2018 to 2021. Considerable reductions in aerosol absorption coefficient and increased single scattering albedo demonstrated that absorbing aerosols were more effectively controlled than scattering aerosols due to pollution control measures. The aerosol radiative effect and the transport's impact on aerosol optical properties were analysed.
Nair Krishnan Kala, Narayana Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
EGUsphere, https://doi.org/10.5194/egusphere-2023-499, https://doi.org/10.5194/egusphere-2023-499, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free-troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Therese Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2023-530, https://doi.org/10.5194/egusphere-2023-530, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked these information to the sources of aerosol found during each season and to processes of cloud glaciation.
Martin de Graaf, Karolina Sarna, Jessica Brown, Elma V. Tenner, Manon Schenkels, and David P. Donovan
Atmos. Chem. Phys., 23, 5373–5391, https://doi.org/10.5194/acp-23-5373-2023, https://doi.org/10.5194/acp-23-5373-2023, 2023
Short summary
Short summary
Clouds over the oceans reflect sunlight and cool the earth. Simultaneous measurements were performed of cloud droplet sizes and smoke particles in and near the cloud base over Ascension Island, a remote island in the Atlantic Ocean, to determine the sensitivity of cloud droplets to smoke from the African continent. The smoke was found to reduce cloud droplet sizes, which makes the cloud droplets more susceptible to evaporation, reducing cloud lifetime.
Madeleine Petersson Sjögren, Malin Alsved, Tina Šantl-Temkiv, Thomas Bjerring Kristensen, and Jakob Löndahl
Atmos. Chem. Phys., 23, 4977–4992, https://doi.org/10.5194/acp-23-4977-2023, https://doi.org/10.5194/acp-23-4977-2023, 2023
Short summary
Short summary
Biological aerosol particles (bioaerosols) affect human health by spreading diseases and may be important agents for atmospheric processes, but their abundance and size distributions are largely unknown. We measured bioaerosols for 18 months in the south of Sweden to investigate bioaerosol temporal variations and their couplings to meteorology. Our results showed that the bioaerosols emissions were coupled to meteorological parameters and depended strongly on the season.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
EGUsphere, https://doi.org/10.5194/egusphere-2023-707, https://doi.org/10.5194/egusphere-2023-707, 2023
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station in the Antarctic Peninsula continuously from January 1 to December 31, 2018. During the pristine and clean periods, Ninety-seven new particle formation (NPF) events were detected. Of the 83 events, CCN concentrations increased by 2–268 % (median 44 %) following 1 to 36 hours (median 8 hours) after NPF events.
Andreas Massling, Robert Lange, Jakob Boyd Pernov, Ulrich Gosewinkel, Lise-Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 23, 4931–4953, https://doi.org/10.5194/acp-23-4931-2023, https://doi.org/10.5194/acp-23-4931-2023, 2023
Short summary
Short summary
The effect of anthropogenic activities on cloud formation introduces the highest uncertainties with respect to climate change. Data on Arctic aerosols and their corresponding cloud-forming properties are very scarce and most important as the Arctic is warming about 2 times as fast as the rest of the globe. Our studies investigate aerosols in the remote Arctic and suggest relatively high cloud-forming potential, although differences are observed between the Arctic spring and summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
EGUsphere, https://doi.org/10.5194/egusphere-2023-627, https://doi.org/10.5194/egusphere-2023-627, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as NPF and growth, feedback loops, the effect of COVID, and what has been learnt from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Kevin C. H. Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys., 23, 4741–4761, https://doi.org/10.5194/acp-23-4741-2023, https://doi.org/10.5194/acp-23-4741-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud formation and thus in our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost 4 times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentrations in models at different times of the year.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Jingye Ren, Lu Chen, Jieyao Liu, and Fang Zhang
Atmos. Chem. Phys., 23, 4327–4342, https://doi.org/10.5194/acp-23-4327-2023, https://doi.org/10.5194/acp-23-4327-2023, 2023
Short summary
Short summary
The density of black carbon (BC) is linked to its morphology and mixing state and could cause uncertainty in evaluating cloud condensation nuclei (CCN) activity. A method for retrieving the mixing state and density of BC in the urban atmosphere is developed. The mean retrieval density of internally mixed BC was lower, assuming void-free spherical structures. Our study suggests the importance of accounting for variable BC density in models when assessing its climate effect in urban atmosphere.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan C. Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
EGUsphere, https://doi.org/10.5194/egusphere-2023-367, https://doi.org/10.5194/egusphere-2023-367, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful to identify the influence of aged BB plumes in anthropogenically-influenced areas.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Chunshui Lin, Ru-Jin Huang, Haobin Zhong, Jing Duan, Zixi Wang, Wei Huang, and Wei Xu
Atmos. Chem. Phys., 23, 3595–3607, https://doi.org/10.5194/acp-23-3595-2023, https://doi.org/10.5194/acp-23-3595-2023, 2023
Short summary
Short summary
The complex interaction between O3 and PM2.5, coupled with the topology of the Fenwei Plain and the evolution of the boundary layer height, highlights the challenges in further reducing particulate pollution in winter despite years of efforts to reduce emissions. Through scenario analysis in a chemical box model constrained by observation, we show the co-benefits of reducing NOx and VOCs simultaneously in reducing ozone and SOA.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-444, https://doi.org/10.5194/egusphere-2023-444, 2023
Short summary
Short summary
The one-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern with our lidar aboard drifted with the pack ice north of 85° N for more than seven months (October 2019 to mid–May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-240, https://doi.org/10.5194/egusphere-2023-240, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during Beijing Olympic Winter Games using a SPA-MS in tandem with a DMA and an AAC. OC and sulfate–containing particles increased while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Haichao Wang, Yongbo Tan, Zheng Shi, Ning Yang, and Tianxue Zheng
Atmos. Chem. Phys., 23, 2843–2857, https://doi.org/10.5194/acp-23-2843-2023, https://doi.org/10.5194/acp-23-2843-2023, 2023
Short summary
Short summary
The effects of aerosols on lightning are complex and still far from understood. We analysed the impacts of aerosols on lightning activity in the Sichuan Basin. Results show that lightning flashes first increase with aerosol loading during all periods and then behave differently (decrease in the afternoon and flatten at night). This suggests that the changes in solar radiation can modulate the aerosol effects on the occurrence and development of convection and lightning activity.
Nathaniel W. May, Noah Bernays, Ryan Farley, Qi Zhang, and Daniel A. Jaffe
Atmos. Chem. Phys., 23, 2747–2764, https://doi.org/10.5194/acp-23-2747-2023, https://doi.org/10.5194/acp-23-2747-2023, 2023
Short summary
Short summary
In summer 2019 at Mt. Bachelor Observatory, we observed smoke from wildfires with transport times ranging from less than a day up to 2 weeks. Aerosol absorption of multi-day transported smoke was dominated by black carbon, while smoke with shorter transport times had greater brown carbon absorption. Notably, Siberian smoke exhibited aerosol scattering and physical properties indicative of contributions from larger particles than typically observed in smoke.
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurring in two areas of southern Italy over 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred, and the role of the air masses were discussed and compared.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023, https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-790, https://doi.org/10.5194/acp-2022-790, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
The number of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of four at low seawater temperatures compared to moderate temperatures, and quantify the temperature dependence as a function of the ocean biogeochemistry.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Cited articles
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by a Sphere,
in: Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag
GmbH, 82–129, https://doi.org/10.1002/9783527618156, 2007.
Bullard, R. L., Singh, A., Anderson, S. M., Lehmann, C. M. B., and Stanier,
C. O.: 10-Month characterization of the aerosol number size distribution and
related air quality and meteorology at the Bondville, IL Midwestern
background site, Atmos. Environ., 154, 348–361, https://doi.org/10.1016/j.atmosenv.2016.12.055, 2017.
Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, 2015.
Chen, H., Hodshire, A. L., Ortega, J., Greenberg, J., McMurry, P. H., Carlton, A. G., Pierce, J. R., Hanson, D. R., and Smith, J. N.: Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site, Atmos. Chem. Phys., 18, 311–326, https://doi.org/10.5194/acp-18-311-2018, 2018.
Du, P., Gui, H., Zhang, J., Liu, J., Yu, T., Wang, J., Cheng, Y., and Shi,
Z.: Number size distribution of atmospheric particles in a suburban Beijing
in the summer and winter of 2015, Atmos. Environ., 186, 32–44,
https://doi.org/10.1016/j.atmosenv.2018.05.023, 2018.
Du, W., Zhao, J., Wang, Y., Zhang, Y., Wang, Q., Xu, W., Chen, C., Han, T., Zhang, F., Li, Z., Fu, P., Li, J., Wang, Z., and Sun, Y.: Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China, Atmos. Chem. Phys., 17, 6797–6811, https://doi.org/10.5194/acp-17-6797-2017, 2017.
Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar
UV, J. Geophys.Res.-Atmos., 105, 3565–3571, https://doi.org/10.1029/1999JD901070, 2000.
Elterman, L., Wexler, R., and Chang, D.: COMPARISON OF AEROSOL MEASUREMENTS
OVER NEW MEXICO WITH ATMOSPHERIC FEATURES, J. Opt. Soc.
Am., 58, 741–746, 1968.
Ferrero, L., Mocnik, G., Ferrini, B. S., Perrone, M. G., Sangiorgi, G., and
Bolzacchini, E.: Vertical profiles of aerosol absorption coefficient from
micro-Aethalometer data and Mie calculation over Milan, Sci. Total
Environ., 409, 2824–2837, 2011.
Ghan, S. J. and Schwartz, S. E.: Aerosol Properties and Processes: A Path
from Field and Laboratory Measurements to Global Climate Models, B.
Am. Meteorol. Soc., 88, 1059–1084, https://doi.org/10.1175/bams-88-7-1059,
2007.
Kulmala, M., Maso, M. D., Mäkelä, J. M., Pirjola, L.,
Väkevä, M., Aalto, P., Miikkulainen, P., Hämeri, K., and O'dowd,
C. D.: On the formation, growth and composition of nucleation mode
particles, Tellus B, 53, 479–490,
10.3402/tellusb.v53i4.16622, 2001.
Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen,
V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates of
ultrafine atmospheric particles: a review of observations, J.
Aerosol Sci., 35, 143–176, https://doi.org/10.1016/j.jaerosci.2003.10.003, 2004.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petaja, T., Sipila, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Jarvinen, E., Aijala, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin III, R. L., Duplissy, J., Vehkamaki, H., Back, J., Kortelainen, A., Riipinen, I., Kurten, T., Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V.-M., and Worsnop, D. R.: Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943–946, https://doi.org/10.1126/science.1227385, 2013.
Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M.,
Worsnop, D. R., and Kerminen, V. M.: Chemistry of Atmospheric Nucleation: On
the Recent Advances on Precursor Characterization and Atmospheric Cluster
Composition in Connection with Atmospheric New Particle Formation, Annu.
Rev. Phys. Chem., 65, 21–37,
https://doi.org/10.1146/annurev-physchem-040412-110014, 2014.
Liu, P., Zhao, C., Zhang, Q., Deng, Z., Huang, M., Xincheng, M. A., and Tie,
X.: Aircraft study of aerosol vertical distributions over Beijing and their
optical properties, Tellus B, 61,
756–767, 2009.
Madronich, S. and Flocke, S.: Theoretical Estimation of Biologically
Effective UV Radiation at the Earth's Surface, in: Solar Ultraviolet
Radiation, Berlin, Heidelberg, 23–48, 1997.
Malinina, E., Rozanov, A., Rozanov, V., Liebing, P., Bovensmann, H., and Burrows, J. P.: Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements, Atmos. Meas. Tech., 11, 2085–2100, https://doi.org/10.5194/amt-11-2085-2018, 2018.
Maso, M. D., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P.
P., and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric
aerosols: eight years of aerosol size distribution data from SMEAR II,
Hyytiala, Finland, Boreal Environ. Res., 10, 323–336, 2005.
Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009.
Müller, T., Laborde, M., Kassell, G., and Wiedensohler, A.: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer, Atmos. Meas. Tech., 4, 1291–1303, https://doi.org/10.5194/amt-4-1291-2011, 2011.
Peng, Y., Liu, X., Dai, J., Wang, Z., Dong, Z., Dong, Y., Chen, C., Li, X.,
Zhao, N., and Fan, C.: Aerosol size distribution and new particle formation
events in the suburb of Xi'an, northwest China, Atmos. Environ.,
153, 194–205, https://doi.org/10.1016/j.atmosenv.2017.01.022, 2017.
Platis, A., Altstädter, B., Wehner, B., Wildmann, N., Lampert, A.,
Hermann, M., Birmili, W., and Bange, J.: An Observational Case Study on the
Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation,
Bound.-Lay. Meteorol., 158, 67–92, https://doi.org/10.1007/s10546-015-0084-y, 2016.
Qi, X., Ding, A., Nie, W., Chi, X., Huang, X., Xu, Z., Wang, T., Wang, Z.,
Wang, J., Sun, P., Zhang, Q., Huo, J., Wang, D., Bian, Q., Zhou, L., Zhang,
Q., Ning, Z., Fei, D., Xiu, G., and Fu, Q.: Direct measurement of new
particle formation based on tethered airship around the top of the planetary
boundary layer in eastern China, Atmos. Environ., 209, 92–101,
https://doi.org/10.1016/j.atmosenv.2019.04.024, 2019.
Rohrer, F. and Berresheim, H.: Strong correlation between levels of
tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442,
184–187, https://doi.org/10.1038/nature04924, 2006.
Schobesberger, S., Vaananen, R., and Leino, K.: Airborne measurements over
the boreal forest of southern Finland during new particle formation events
in 2009 and 2010, Boreal Environ. Res., 18, 145–163, 2013.
Shang, D., Hu, M., Zheng, J., Qin, Y., Du, Z., Li, M., Fang, J., Peng, J., Wu, Y., Lu, S., and Guo, S.: Particle number size distribution and new particle formation under the influence of biomass burning at a high altitude background site at Mt. Yulong (3410 m), China, Atmos. Chem. Phys., 18, 15687–15703, https://doi.org/10.5194/acp-18-15687-2018, 2018.
Shang, D., Peng, J., Guo, S., Wu, Z., and Hu, M.: Secondary aerosol
formation in winter haze over the Beijing-Tianjin-Hebei Region, China,
Front. Environ. Sci. Eng., 15, 34,
https://doi.org/10.1007/s11783-020-1326-x, 2021.
Steinfeld, J. I.: Atmospheric Chemistry and Physics: From Air Pollution to
Climate Change, Environment: Science and Policy for Sustainable Development,
40, 26–26, https://doi.org/10.1080/00139157.1999.10544295, 1998.
Stolzenburg, M. R., McMurry, P. H., Sakurai, H., Smith, J. N., Mauldin III,
R. L., Eisele, F. L., and Clement, C. F.: Growth rates of freshly nucleated
atmospheric particles in Atlanta, J. Geophys. Res.-Atmos., 110, D22, https://doi.org/10.1029/2005JD005935, 2005.
Tao, J. C., Zhao, C. S., Ma, N., and Liu, P. F.: The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient, Atmos. Chem. Phys., 14, 12055–12067, https://doi.org/10.5194/acp-14-12055-2014, 2014.
Wang, H., Lu, K., Chen, X., Zhu, Q., Wu, Z., Wu, Y., and Sun, K.: Fast particulate nitrate formation via N2O5 uptake aloft in winter in Beijing, Atmos. Chem. Phys., 18, 10483–10495, https://doi.org/10.5194/acp-18-10483-2018, 2018.
Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M., Brito, J.,
Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E.,
Mei, F., Moran-Zuloaga, D., Pohlker, C., Pohlker, M. L., Saturno, J.,
Schmid, B., Souza, R. A., Springston, S. R., Tomlinson, J. M., Toto, T.,
Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A., Artaxo,
P., Andreae, M. O., Petaja, T., and Martin, S. T.: Amazon boundary layer
aerosol concentration sustained by vertical transport during rainfall,
Nature, 539, 416–419, https://doi.org/10.1038/nature19819, 2016.
Wang, Q., Sun, Y., Xu, W., Du, W., Zhou, L., Tang, G., Chen, C., Cheng, X., Zhao, X., Ji, D., Han, T., Wang, Z., Li, J., and Wang, Z.: Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China, Atmos. Chem. Phys., 18, 2495–2509, https://doi.org/10.5194/acp-18-2495-2018, 2018.
Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J.,
and Jefferson, A.: MEASURED ATMOSPHERIC NEW PARTICLE FORMATION RATES:
IMPLICATIONS FOR NUCLEATION MECHANISMS, Chem. Eng. Commun.,
151, 53–64, https://doi.org/10.1080/00986449608936541, 1996.
Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J.,
and Jefferson, A.: Measurements of new particle formation and ultrafine
particle growth rates at a clean continental site, J. Geophys.
Res.-Atmos., 102, 4375–4385, https://doi.org/10.1029/96JD03656, 1997.
Weber, R. J., Chen, G., Davis, D. D., Mauldin, R. L., Tanner, D. J., Eisele,
F. L., Clarke, A. D., Thornton, D. C., and Bandy, A. R.: Measurements of
enhanced H2SO4 and 3–4 nm particles near a frontal cloud during the First
Aerosol Characterization Experiment (ACE 1), J. Geophys. Res.-Atmos., 106,
24107–24117, https://doi.org/10.1029/2000jd000109, 2001.
Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T.,
Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J.
L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A.,
Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C.
A.: A large source of cloud condensation nuclei from new particle formation
in the tropics, Nature, 574, 399–403, https://doi.org/10.1038/s41586-019-1638-9, 2019.
Wu, Z., Hu, M., Lin, P., Liu, S., Wehner, B., and Wiedensohler, A.: Particle
number size distribution in the urban atmosphere of Beijing, China,
Atmos. Environ., 42, 7967–7980, https://doi.org/10.1016/j.atmosenv.2008.06.022, 2008.
Zhang, R. Y., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and
Growth of Nanoparticles in the Atmosphere, Chem, Rev,, 112, 1957–2011,
https://doi.org/10.1021/cr2001756, 2012.
Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M.,
Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet,
B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine
particles in the Amazon free troposphere produced by organic new particle
formation, P. Natl. Acad. Sci., 117, 25344,
https://doi.org/10.1073/pnas.2006716117, 2020.
Zhao, G., Zhao, C., Kuang, Y., Tao, J., Tan, W., Bian, Y., Li, J., and Li, C.: Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals, Atmos. Chem. Phys., 17, 12133–12143, https://doi.org/10.5194/acp-17-12133-2017, 2017.
Zhao, G., Zhao, C., Kuang, Y., Bian, Y., Tao, J., Shen, C., and Yu, Y.: Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system, Atmos. Chem. Phys., 18, 9049–9060, https://doi.org/10.5194/acp-18-9049-2018, 2018.
Zhao, G., Tao, J., Kuang, Y., Shen, C., Yu, Y., and Zhao, C.: Role of black carbon mass size distribution in the direct aerosol radiative forcing, Atmos. Chem. Phys., 19, 13175–13188, https://doi.org/10.5194/acp-19-13175-2019, 2019.
Zhu, X., Tang, G., Guo, J., Hu, B., Song, T., Wang, L., Xin, J., Gao, W., Münkel, C., Schäfer, K., Li, X., and Wang, Y.: Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei, Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, 2018.
Zhu, Y., Wu, Z., Park, Y., Fan, X., Bai, D., Zong, P., Qin, B., Cai, X., and
Ahn, K. H.: Measurements of atmospheric aerosol vertical distribution above
North China Plain using hexacopter, Sci. Total Environ., 665, 1095–1102,
https://doi.org/10.1016/j.scitotenv.2019.02.100, 2019.
Short summary
New particle formation is thought to contribute half of the global cloud condensation nuclei. We find that the new particle formation is more likely to happen in the upper boundary layer than that at the ground, which can be partially explained by the aerosol–radiation interaction. Our study emphasizes the influence of aerosol–radiation interaction on the NPF.
New particle formation is thought to contribute half of the global cloud condensation nuclei. We...
Altmetrics
Final-revised paper
Preprint