Articles | Volume 21, issue 12
Atmos. Chem. Phys., 21, 9669–9679, 2021
https://doi.org/10.5194/acp-21-9669-2021
Atmos. Chem. Phys., 21, 9669–9679, 2021
https://doi.org/10.5194/acp-21-9669-2021
Research article
 | Highlight paper
29 Jun 2021
Research article  | Highlight paper | 29 Jun 2021

Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes

David D. Parrish et al.

Related authors

Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022,https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary
Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022,https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
The formation and mitigation of nitrate pollution: comparison between urban and suburban environments
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022,https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022,https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Exploring the drivers of the increased ozone production in Beijing in summertime during 2005–2016
Wenjie Wang, David D. Parrish, Xin Li, Min Shao, Ying Liu, Ziwei Mo, Sihua Lu, Min Hu, Xin Fang, Yusheng Wu, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15617–15633, https://doi.org/10.5194/acp-20-15617-2020,https://doi.org/10.5194/acp-20-15617-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022,https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations
Yue Tan and Tao Wang
Atmos. Chem. Phys., 22, 14455–14466, https://doi.org/10.5194/acp-22-14455-2022,https://doi.org/10.5194/acp-22-14455-2022, 2022
Short summary
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022,https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022,https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022,https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary

Cited articles

Bevington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill Higher Education, New York, NY, 2003. 
Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, J. Atmos. Chem., 26, 223–274, 1997. 
Download
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Altmetrics
Final-revised paper
Preprint