Articles | Volume 17, issue 13
https://doi.org/10.5194/acp-17-8157-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-8157-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality
Andrea Mues
CORRESPONDING AUTHOR
Institute for Advanced Sustainability Studies (IASS), 14467 Potsdam, Germany
Maheswar Rupakheti
CORRESPONDING AUTHOR
Institute for Advanced Sustainability Studies (IASS), 14467 Potsdam, Germany
Christoph Münkel
Vaisala GmbH, 22607 Hamburg, Germany
Axel Lauer
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Heiko Bozem
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany
Peter Hoor
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany
Tim Butler
Institute for Advanced Sustainability Studies (IASS), 14467 Potsdam, Germany
Mark G. Lawrence
Institute for Advanced Sustainability Studies (IASS), 14467 Potsdam, Germany
Related authors
Khadak Singh Mahata, Maheswar Rupakheti, Arnico Kumar Panday, Piyush Bhardwaj, Manish Naja, Ashish Singh, Andrea Mues, Paolo Cristofanelli, Deepak Pudasainee, Paolo Bonasoni, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 14113–14132, https://doi.org/10.5194/acp-18-14113-2018, https://doi.org/10.5194/acp-18-14113-2018, 2018
Short summary
Short summary
This paper presents the first-time simultaneous measurement of CO and O3 at multiple sites in the Kathmandu Valley bottom, its mountain rim and a river outlet, providing their spatial, temporal and seasonal–diurnal variations. Our study reveals that high O3, especially during premonsoon, in observed sites is of high concern for human health and ecosystems in the region. We also estimated CO emission flux to be 2–14 times higher than widely used emission databases (EDGAR HTAP, REAS and INTEX-B).
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018, https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
Short summary
This study provides information about the regional variabilities in some of the pollutants using observations in Nepal and India. It is shown that agricultural crop residue burning leads to a significant enhancement in ozone and CO over a wider region. Further, the wintertime higher ozone levels are shown to be largely due to local emissions, while regional transport could be important in spring and hence shows the role of regional sources versus local sources in the Kathmandu Valley.
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018, https://doi.org/10.5194/gmd-11-2067-2018, 2018
Astrid M. M. Manders, Peter J. H. Builtjes, Lyana Curier, Hugo A. C. Denier van der Gon, Carlijn Hendriks, Sander Jonkers, Richard Kranenburg, Jeroen J. P. Kuenen, Arjo J. Segers, Renske M. A. Timmermans, Antoon J. H. Visschedijk, Roy J. Wichink Kruit, W. Addo J. van Pul, Ferd J. Sauter, Eric van der Swaluw, Daan P. J. Swart, John Douros, Henk Eskes, Erik van Meijgaard, Bert van Ulft, Peter van Velthoven, Sabine Banzhaf, Andrea C. Mues, Rainer Stern, Guangliang Fu, Sha Lu, Arnold Heemink, Nils van Velzen, and Martijn Schaap
Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, https://doi.org/10.5194/gmd-10-4145-2017, 2017
Short summary
Short summary
The regional-scale air quality model LOTOS–EUROS has been developed by a consortium of Dutch institutes. Recently, version 2.0 of the model was released as an open-source version. Next to a technical description and model evaluation for 2012, this paper presents the model developments in context of the history of air quality modelling and provides an outlook for future directions. Key and innovative applications of LOTOS–EUROS are also highlighted.
Z. L. Lüthi, B. Škerlak, S.-W. Kim, A. Lauer, A. Mues, M. Rupakheti, and S. Kang
Atmos. Chem. Phys., 15, 6007–6021, https://doi.org/10.5194/acp-15-6007-2015, https://doi.org/10.5194/acp-15-6007-2015, 2015
Short summary
Short summary
The Himalayas and the Tibetan Plateau region (HTP) is regularly exposed to polluted air masses that might influence glaciers as well as climate on regional to global scales. We found that atmospheric brown clouds from South Asia reach the HTP by crossing the Himalayas not only through the major north--south river valleys but rather over large areas by being lifted and advected at mid-troposheric levels. The transport is enabled by a combination of synoptic and local meteorological settings.
A. Mues, J. Kuenen, C. Hendriks, A. Manders, A. Segers, Y. Scholz, C. Hueglin, P. Builtjes, and M. Schaap
Atmos. Chem. Phys., 14, 939–955, https://doi.org/10.5194/acp-14-939-2014, https://doi.org/10.5194/acp-14-939-2014, 2014
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-236, https://doi.org/10.5194/gmd-2024-236, 2025
Preprint under review for GMD
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3946, https://doi.org/10.5194/egusphere-2024-3946, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The study investigates transport within the Asian Summer Monsoon, focussing on how CH2Cl2 reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days.
Chun Hang Chau, Peter Hoor, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2024-3805, https://doi.org/10.5194/egusphere-2024-3805, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines how the turbulence in the upper troposphere/lower stratosphere could modify the tracer distribution under different situations. Using a multi-scale chemistry model, we find that both the pre-existing tracer gradient and the dynamical and thermodynamically forcing play a role in modifying the tracer distribution. These results allow further research on the UTLS turbulent mixing and its implications for the climate system.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
EGUsphere, https://doi.org/10.5194/egusphere-2024-3702, https://doi.org/10.5194/egusphere-2024-3702, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight increases in anthropogenic emission are the primary driver of ozone increases both in the free troposphere and at the surface.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Tabish Ansari, Aditya Nalam, Aurelia Lupaşcu, Carsten Hinz, Simon Grasse, and Tim Butler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3752, https://doi.org/10.5194/egusphere-2024-3752, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Surface ozone can travel far from its sources. In recent decades, emissions of ozone-forming gases have decreased in North America and Europe but risen in Asia, alongside rising global methane levels. Using advanced modeling, this study reveals that while local reductions in nitrogen oxides have lowered summer ozone, increases in natural and foreign sources offset these gains. Methane remains important, but its ozone impact has declined with reduced local emissions.
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
Atmos. Chem. Phys., 24, 13653–13679, https://doi.org/10.5194/acp-24-13653-2024, https://doi.org/10.5194/acp-24-13653-2024, 2024
Short summary
Short summary
The tropopause separates the troposphere, where many greenhouse gases originate, from the stratosphere. This study examines a tropopause defined by potential vorticity – an analogue for angular momentum that changes sharply in the subtropics, creating a transport barrier. Between 1980 and 2017, this tropopause shifted poleward at lower altitudes and equatorward above, suggesting height-dependent changes in atmospheric circulation that may affect greenhouse gas distribution and global warming.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-281, https://doi.org/10.5194/essd-2024-281, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign specific instrument operation, data processing, and data quality. The data set comprises in-situ and remote sensing observations from three research aircraft, HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024, https://doi.org/10.5194/essd-16-3001-2024, 2024
Short summary
Short summary
CCClim displays observations of clouds in terms of cloud classes that have been in use for a long time. CCClim is a machine-learning-powered product based on multiple existing observational products from different satellites. We show that the cloud classes in CCClim are physically meaningful and can be used to study cloud characteristics in more detail. The goal of this is to make real-world clouds more easily understandable to eventually improve the simulation of clouds in climate models.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
EGUsphere, https://doi.org/10.5194/egusphere-2024-1518, https://doi.org/10.5194/egusphere-2024-1518, 2024
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. For this, it is crucial to understand possible shortcomings in the models. New features of the software package ESMValTool allow for comparing and visualizing a model's performance in reproducing observations within the context of other climate models in an easy and user-friendly way. The aim is to help model developers to assess and monitor climate simulations more efficiently.
Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, and Katharina Turhal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1700, https://doi.org/10.5194/egusphere-2024-1700, 2024
Short summary
Short summary
The lowermost stratosphere (LMS) plays an important role for the Earth’s climate, containing strong gradients of ozone and water vapor. Our results indicate that the thermodynamic structure of the LMS has been changing between 1979–2019 in response to anthropogenic climate change and the recovery of stratospheric ozone, also hinting towards large scale circulation changes. We find that both the upper and lower LMS boundaries show an (upward) trend, which has implications on the LMS mass.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-61, https://doi.org/10.5194/gmd-2024-61, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, allowing greater levels of flexibility and performance in modelling emission sources across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for PM10. The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in the PM concentration distribution.
Aditya Nalam, Aura Lupascu, Tabish Ansari, and Timothy Butler
EGUsphere, https://doi.org/10.5194/egusphere-2024-432, https://doi.org/10.5194/egusphere-2024-432, 2024
Short summary
Short summary
Tropospheric O3 molecules are labelled with the identity of their precursor source in CAM-Chem to quantify the contribution from various emission sources to the tropospheric O3 burden (TOB) and its trends. With an equatorward shift, anthropogenic NOx emissions become significantly more efficient at producing O3 and play a major role in driving TOB trends. This is due to larger convection at the tropics effectively lifting O3 and its precursors to the free troposphere where O3 lifetime is longer.
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024, https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Short summary
Climate model simulations still show a large range of effective climate sensitivity (ECS) with high uncertainties. An important contribution to ECS is cloud climate feedback. We investigate the representation of cloud physical and radiative properties from Coupled Model Intercomparison Project models grouped by ECS. We compare the simulated cloud properties of today’s climate from three ECS groups and quantify how the projected changes in cloud properties and cloud radiative effects differ.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Hans-Christoph Lachnitt, Peter Hoor, Daniel Kunkel, Martina Bramberger, Andreas Dörnbrack, Stefan Müller, Philipp Reutter, Andreas Giez, Thorsten Kaluza, and Markus Rapp
Atmos. Chem. Phys., 23, 355–373, https://doi.org/10.5194/acp-23-355-2023, https://doi.org/10.5194/acp-23-355-2023, 2023
Short summary
Short summary
We present an analysis of high-resolution airborne measurements during a flight of the DEEPWAVE 2014 campaign in New Zealand. The focus of this flight was to study the effects of enhanced mountain wave activity over the Southern Alps. We discuss changes in the upstream and downstream distributions of N2O and CO and show that these changes are related to turbulence-induced trace gas fluxes which have persistent effects on the trace gas composition in the lower stratosphere.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Aurelia Lupaşcu, Noelia Otero, Andrea Minkos, and Tim Butler
Atmos. Chem. Phys., 22, 11675–11699, https://doi.org/10.5194/acp-22-11675-2022, https://doi.org/10.5194/acp-22-11675-2022, 2022
Short summary
Short summary
Ground-level ozone is an important air pollutant that affects human health, ecosystems, and climate. Ozone is not emitted directly but rather formed in the atmosphere through chemical reactions involving two distinct precursors. Our results provide detailed information about the origin of ozone in Germany during two peak ozone events that took place in 2015 and 2018, thus improving our understanding of ground-level ozone.
Linda Smoydzin and Peter Hoor
Atmos. Chem. Phys., 22, 7193–7206, https://doi.org/10.5194/acp-22-7193-2022, https://doi.org/10.5194/acp-22-7193-2022, 2022
Short summary
Short summary
Our study presents a detailed analysis of the spatial and temporal distribution of elevated CO level in the upper troposphere over the Pacific using 20 years of MOPITT data. We create a climatology of severe pollution episodes and use trajectory calculations to link each particular pollution event detected in MOPITT satellite data with a distinct source region. Additionally, we analyse uplift mechanisms such as WCB-related upward transport.
Mukesh Rai, Shichang Kang, Junhua Yang, Maheswar Rupakheti, Dipesh Rupakheti, Lekhendra Tripathee, Yuling Hu, and Xintong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-199, https://doi.org/10.5194/acp-2022-199, 2022
Revised manuscript not accepted
Short summary
Short summary
Our study revealed distinctive seasonality with the maximum and minimum aerosol concentrations during the winter and summer seasons respectively. However, interestingly summer high (AOD > 0.8) was observed over South Asia. The highest aerosols are laden over South Asia and East China within 1–2 km, however, aerosol overshooting found up to 10 km due to the deep convection process. Whereas, integrated aerosol transport for OC during spring was found to be 5 times higher than the annual mean.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021, https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Short summary
This study presents and compares inorganic chlorine (Cly) derived from observations with the HALO research aircraft in the Antarctic late winter–early fall 2019 and the Arctic winter 2015–2016. Trend-corrected correlations from the Northern Hemisphere show excellent agreement with those from the Southern Hemisphere. After observation allocation inside and outside the vortex based on N2O measurements, results of the two campaigns reveal substantial differences in Cly within the respective vortex.
Sho Ohata, Makoto Koike, Atsushi Yoshida, Nobuhiro Moteki, Kouji Adachi, Naga Oshima, Hitoshi Matsui, Oliver Eppers, Heiko Bozem, Marco Zanatta, and Andreas B. Herber
Atmos. Chem. Phys., 21, 15861–15881, https://doi.org/10.5194/acp-21-15861-2021, https://doi.org/10.5194/acp-21-15861-2021, 2021
Short summary
Short summary
Vertical profiles of black carbon (BC) in the Arctic were measured during the PAMARCMiP aircraft-based experiment in spring 2018 and compared with those observed during previous aircraft campaigns in 2008, 2010, and 2015. Their differences were explained primarily by the year-to-year variation of biomass burning activities in northern midlatitudes over Eurasia. Our observations provide a bases to evaluate numerical model simulations that assess the BC radiative effects in the Arctic spring.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Short summary
A large-eddy simulation based chemical transport model is implemented for an idealized street canyon. The dynamics of the model are evaluated using stationary measurements. A transient model run is also conducted over a 24 h period, where variations of pollutant concentrations indicate dependence on emissions, background concentrations, and solar state. Comparison stationary model runs show changes in flow structure concentrations.
Thorsten Kaluza, Daniel Kunkel, and Peter Hoor
Weather Clim. Dynam., 2, 631–651, https://doi.org/10.5194/wcd-2-631-2021, https://doi.org/10.5194/wcd-2-631-2021, 2021
Short summary
Short summary
We present a 10-year analysis on the occurrence of strong wind shear in the Northern Hemisphere, focusing on the region around the transport barrier that separates the first two layers of the atmosphere. The major result of our analysis is that strong wind shear above a certain threshold occurs frequently and nearly exclusively in this region, which, as an indicator for turbulent mixing, might have major implications concerning the separation efficiency of the transport barrier.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Elena Macdonald, Noelia Otero, and Tim Butler
Atmos. Chem. Phys., 21, 4007–4023, https://doi.org/10.5194/acp-21-4007-2021, https://doi.org/10.5194/acp-21-4007-2021, 2021
Short summary
Short summary
NO2 limit values are still regularly exceeded in many European cities despite decreasing emissions. Measurements of NOx concentrations from stations across Europe were systematically analysed to assess long-term changes observed in urban areas. We compared trends in concentration increments to trends in total and traffic emissions to find potential discrepancies. The results can help in evaluating inaccuracies in emission inventories and in improving spatial imbalances in data availability.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
Tim Butler, Aurelia Lupascu, and Aditya Nalam
Atmos. Chem. Phys., 20, 10707–10731, https://doi.org/10.5194/acp-20-10707-2020, https://doi.org/10.5194/acp-20-10707-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is not directly emitted; it is formed chemically in the atmosphere. Some ground-level O3 is transported from the stratosphere, but most O3 is produced from reactive precursors that are emitted by both natural and anthropogenic sources. We present the results of a novel source apportionment method for ground-level O3. Our results are consistent with previous work and also provide new insights. In particular, we highlight the roles of methane and international shipping.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
Axel Lauer, Veronika Eyring, Omar Bellprat, Lisa Bock, Bettina K. Gier, Alasdair Hunter, Ruth Lorenz, Núria Pérez-Zanón, Mattia Righi, Manuel Schlund, Daniel Senftleben, Katja Weigel, and Sabrina Zechlau
Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, https://doi.org/10.5194/gmd-13-4205-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool is a community software tool designed for evaluation and analysis of climate models. New features of version 2.0 include analysis scripts for important large-scale features in climate models, diagnostics for extreme events, regional model and impact evaluation. In this paper, newly implemented climate metrics, emergent constraints for climate-relevant feedbacks and diagnostics for future model projections are described and illustrated with examples.
Noelia Otero, Henning W. Rust, and Tim Butler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-691, https://doi.org/10.5194/acp-2020-691, 2020
Revised manuscript not accepted
Short summary
Short summary
Surface ozone concentrations are strongly correlated with temperature in summertime. Using long-term measurements, we investigate changes in the observed relationship between ozone and temperature over Germany. We propose a new statistical approach based on Generalized Additive Models (GAMs) to describe ozone production rates as a function of nitrogen oxides (NOx) and temperature. Our results suggest that NOx reductions alone can not explain the changes in the temperature dependence of ozone.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Marius Hauck, Harald Bönisch, Peter Hoor, Timo Keber, Felix Ploeger, Tanja J. Schuck, and Andreas Engel
Atmos. Chem. Phys., 20, 8763–8785, https://doi.org/10.5194/acp-20-8763-2020, https://doi.org/10.5194/acp-20-8763-2020, 2020
Short summary
Short summary
This study features an extended inversion method that includes transport across the extratropical tropopause to derive age spectra in the lowermost stratosphere from in situ trace gas measurements. The refined method is validated in a model setup and applied to data gained with the HALO research aircraft. Results are congruent with the findings of previous studies so that the method provides a promising toolset for the analysis of stratospheric dynamics based on observations in the future.
August Andersson, Elena N. Kirillova, Stefano Decesari, Langley DeWitt, Jimmy Gasore, Katherine E. Potter, Ronald G. Prinn, Maheswar Rupakheti, Jean de Dieu Ndikubwimana, Julius Nkusi, and Bonfils Safari
Atmos. Chem. Phys., 20, 4561–4573, https://doi.org/10.5194/acp-20-4561-2020, https://doi.org/10.5194/acp-20-4561-2020, 2020
Short summary
Short summary
Large-scale biomass burning events seasonally cover sub-Saharan Africa with air particles. In this study, we find that the concentrations of these particles at a remote mountain site in Rwanda may increase by a factor of 10 during such dry biomass burning periods, with strong implications for the regional climate and human health. These results provide quantitative constraints that could contribute to reducing the large uncertainties regarding the environmental impact of these fires.
Mattia Righi, Bouwe Andela, Veronika Eyring, Axel Lauer, Valeriu Predoi, Manuel Schlund, Javier Vegas-Regidor, Lisa Bock, Björn Brötz, Lee de Mora, Faruk Diblen, Laura Dreyer, Niels Drost, Paul Earnshaw, Birgit Hassler, Nikolay Koldunov, Bill Little, Saskia Loosveldt Tomas, and Klaus Zimmermann
Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, https://doi.org/10.5194/gmd-13-1179-2020, 2020
Short summary
Short summary
This paper describes the second major release of ESMValTool, a community diagnostic and performance metrics tool for the evaluation of Earth system models. This new version features a brand new design, with an improved interface and a revised preprocessor. It takes advantage of state-of-the-art computational libraries and methods to deploy efficient and user-friendly data processing, improving the performance over its predecessor by more than a factor of 30.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Heiko Bozem, Peter Hoor, Daniel Kunkel, Franziska Köllner, Johannes Schneider, Andreas Herber, Hannes Schulz, W. Richard Leaitch, Amir A. Aliabadi, Megan D. Willis, Julia Burkart, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 19, 15049–15071, https://doi.org/10.5194/acp-19-15049-2019, https://doi.org/10.5194/acp-19-15049-2019, 2019
Short summary
Short summary
We present airborne trace gas measurements in the European and Canadian Arctic for July 2014 and April 2015. Based on CO and CO2 in situ data as well as 10 d kinematic back trajectories, we characterize the prevailing transport regimes and derive a tracer-based diagnostic for the determination of the polar dome boundary. Using the tracer-derived boundary, an analysis of the recent transport history of air masses within the polar dome reveals significant differences between spring and summer.
Aurelia Lupaşcu and Tim Butler
Atmos. Chem. Phys., 19, 14535–14558, https://doi.org/10.5194/acp-19-14535-2019, https://doi.org/10.5194/acp-19-14535-2019, 2019
André Ehrlich, Manfred Wendisch, Christof Lüpkes, Matthias Buschmann, Heiko Bozem, Dmitri Chechin, Hans-Christian Clemen, Régis Dupuy, Olliver Eppers, Jörg Hartmann, Andreas Herber, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Leif-Leonard Kliesch, Franziska Köllner, Mario Mech, Stephan Mertes, Roland Neuber, Elena Ruiz-Donoso, Martin Schnaiter, Johannes Schneider, Johannes Stapf, and Marco Zanatta
Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, https://doi.org/10.5194/essd-11-1853-2019, 2019
Short summary
Short summary
During the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. The data set combines remote sensing and in situ measurement of cloud, aerosol, and trace gas properties, as well as turbulent and radiative fluxes, which will be used to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification.
Pankaj Sadavarte, Maheswar Rupakheti, Prakash Bhave, Kiran Shakya, and Mark Lawrence
Atmos. Chem. Phys., 19, 12953–12973, https://doi.org/10.5194/acp-19-12953-2019, https://doi.org/10.5194/acp-19-12953-2019, 2019
Short summary
Short summary
Emission inventory studies are an important regulatory tool for quantifying the amount of pollutants released in the atmosphere using the fuel consumption and emission rates for different fuels. This study developed an emission inventory over Nepal for 2001–2016 that reveals the changing fuel consumption and subsequently the pollution across different sectors of industrial, transport, agricultural, commercial and residential uses with the use of spatial distribution of anthropogenic activities.
Daniel Kunkel, Peter Hoor, Thorsten Kaluza, Jörn Ungermann, Björn Kluschat, Andreas Giez, Hans-Christoph Lachnitt, Martin Kaufmann, and Martin Riese
Atmos. Chem. Phys., 19, 12607–12630, https://doi.org/10.5194/acp-19-12607-2019, https://doi.org/10.5194/acp-19-12607-2019, 2019
Short summary
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Horst Fischer, Raoul Axinte, Heiko Bozem, John N. Crowley, Cheryl Ernest, Stefan Gilge, Sascha Hafermann, Hartwig Harder, Korbinian Hens, Ruud H. H. Janssen, Rainer Königstedt, Dagmar Kubistin, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Christian Plass-Dülmer, Andrea Pozzer, Eric Regelin, Andreas Reiffs, Torsten Schmidt, Jan Schuladen, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11953–11968, https://doi.org/10.5194/acp-19-11953-2019, https://doi.org/10.5194/acp-19-11953-2019, 2019
Short summary
Short summary
We use in situ observations of H2O2 to study the interplay between photochemistry, transport and deposition processes. The data were obtained during five ground-based field campaigns across Europe. A budget calculation indicates that the photochemical production rate was much larger than photochemical loss and that dry deposition is the dominant loss process. To reproduce the change in H2O2 mixing ratios after sunrise, a variable contribution of entrainment from the residual layer is required.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday
Atmos. Chem. Phys., 19, 8209–8228, https://doi.org/10.5194/acp-19-8209-2019, https://doi.org/10.5194/acp-19-8209-2019, 2019
Short summary
Short summary
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, the capital city of Nepal. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and found that they have significant impacts on air quality surrounding the valley. Our results highlight the importance of improving local emissions estimates for air quality modeling.
Thorsten Kaluza, Daniel Kunkel, and Peter Hoor
Atmos. Chem. Phys., 19, 6621–6636, https://doi.org/10.5194/acp-19-6621-2019, https://doi.org/10.5194/acp-19-6621-2019, 2019
Short summary
Short summary
We present a comprehensive mean evolution of the tropopause inversion layer in mid-latitudes, an atmospheric feature that is located in the region that separates the well-mixed troposphere and the stably stratified stratosphere. We counter-intuitively find this region, which is expected to stabilise atmospheric flow, to exhibit favourable conditions for turbulent exchange between troposphere and stratosphere. This is an important result concerning the overall assessment of exchange processes.
Meng Si, Erin Evoy, Jingwei Yun, Yu Xi, Sarah J. Hanna, Alina Chivulescu, Kevin Rawlings, Daniel Veber, Andrew Platt, Daniel Kunkel, Peter Hoor, Sangeeta Sharma, W. Richard Leaitch, and Allan K. Bertram
Atmos. Chem. Phys., 19, 3007–3024, https://doi.org/10.5194/acp-19-3007-2019, https://doi.org/10.5194/acp-19-3007-2019, 2019
Short summary
Short summary
We investigated the importance of mineral dust, sea spray aerosol, and anthropogenic aerosol to the ice-nucleating particle (INP) population in the Canadian Arctic during spring 2016. The results suggest that mineral dust transported from the Gobi Desert was a major source of the INP population studied, and that sea spray aerosol decreased the ice-nucleating ability of mineral dust. The results should be useful for testing and improving models used to predict INPs and climate in the Arctic.
Xin Wan, Shichang Kang, Maheswar Rupakheti, Qianggong Zhang, Lekhendra Tripathee, Junming Guo, Pengfei Chen, Dipesh Rupakheti, Arnico K. Panday, Mark G. Lawrence, Kimitaka Kawamura, and Zhiyuan Cong
Atmos. Chem. Phys., 19, 2725–2747, https://doi.org/10.5194/acp-19-2725-2019, https://doi.org/10.5194/acp-19-2725-2019, 2019
Short summary
Short summary
The sources of primary and secondary aerosols in the Hindu Kush–Himalayan–Tibetan Plateau region are not well known. Organic molecular tracers are useful for aerosol source apportionment. The characterization of molecular tracers were first systemically investigated and the contribution from primary and secondary sources to carbonaceous aerosols was estimated in the Kathmandu Valley. Our results demonstrate that biomass burning contributed a significant fraction to OC in the Kathmandu Valley.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Hannes Schulz, Marco Zanatta, Heiko Bozem, W. Richard Leaitch, Andreas B. Herber, Julia Burkart, Megan D. Willis, Daniel Kunkel, Peter M. Hoor, Jonathan P. D. Abbatt, and Rüdiger Gerdes
Atmos. Chem. Phys., 19, 2361–2384, https://doi.org/10.5194/acp-19-2361-2019, https://doi.org/10.5194/acp-19-2361-2019, 2019
Short summary
Short summary
Aircraft vertical profiles of black carbon (BC) aerosol from the High Canadian Arctic have shown systematic variability in different levels of the cold, stably stratified polar dome. During spring and summer, efficiencies of BC supply by transport (often from gas flaring and wildfire-affected regions) were different in the lower dome than at higher levels, as apparent from changes in mean particle size and mixing ratios with CO. Summer BC concentrations were a factor of 10 lower than in spring.
H. Langley DeWitt, Jimmy Gasore, Maheswar Rupakheti, Katherine E. Potter, Ronald G. Prinn, Jean de Dieu Ndikubwimana, Julius Nkusi, and Bonfils Safari
Atmos. Chem. Phys., 19, 2063–2078, https://doi.org/10.5194/acp-19-2063-2019, https://doi.org/10.5194/acp-19-2063-2019, 2019
Short summary
Short summary
Air quality in rapidly developing East Africa is a growing but understudied concern. We analyzed long-term black carbon, carbon monoxide, and ozone measurements from the remote Rwanda Climate Observatory and found that seasonal regional biomass burning raised black carbon levels to above-urban concentrations 6 months out of the year. Additional local pollution could exacerbate this issue. More regional monitoring needs to be done to understand and reduce air pollution in this region.
Matthias Wiegner, Ina Mattis, Margit Pattantyús-Ábrahám, Juan Antonio Bravo-Aranda, Yann Poltera, Alexander Haefele, Maxime Hervo, Ulrich Görsdorf, Ronny Leinweber, Josef Gasteiger, Martial Haeffelin, Frank Wagner, Jan Cermak, Katerina Komínková, Mike Brettle, Christoph Münkel, and Kornelia Pönitz
Atmos. Meas. Tech., 12, 471–490, https://doi.org/10.5194/amt-12-471-2019, https://doi.org/10.5194/amt-12-471-2019, 2019
Short summary
Short summary
Many ceilometers are influenced by water vapor absorption in the spectral range around 910 nm. Thus, a correction is required to retrieve aerosol optical properties. Validation of this correction scheme was performed in the framework of CeiLinEx2015 for several ceilometers with good agreement for Vaisala's CL51 ceilometer. For future applications we recommend monitoring the emitted wavelength and providing
darkmeasurements on a regular basis to be able to correct for signal artifacts.
Ashish Singh, Khadak S. Mahata, Maheswar Rupakheti, Wolfgang Junkermann, Arnico K. Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 19, 245–258, https://doi.org/10.5194/acp-19-245-2019, https://doi.org/10.5194/acp-19-245-2019, 2019
Short summary
Short summary
This paper reports the first airborne measurement campaign in the central Himalayan foothill region, one of the polluted but relatively poorly sampled regions of the world. The measurement campaign quantifies the vertical distribution of aerosols over a polluted mountain valley in the Himalayan foothills and investigates the extent of regional emission transport.
Megan D. Willis, Heiko Bozem, Daniel Kunkel, Alex K. Y. Lee, Hannes Schulz, Julia Burkart, Amir A. Aliabadi, Andreas B. Herber, W. Richard Leaitch, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 19, 57–76, https://doi.org/10.5194/acp-19-57-2019, https://doi.org/10.5194/acp-19-57-2019, 2019
Short summary
Short summary
The vertical distribution of Arctic aerosol is an important driver of its climate impacts. We present vertically resolved measurements of aerosol composition and properties made in the High Arctic during spring on an aircraft platform. We explore how aerosol properties are related to transport history and show evidence of vertical trends in aerosol sources, transport mechanisms and composition. These results will help us to better understand aerosol–climate interactions in the Arctic.
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Short summary
The paper describes the synoptic development during the ACLOUD/PASCAL airborne and ship-based field campaign near Svalbard in spring 2017. This development is presented using near-surface and upperair meteorological observations, satellite, and model data. We first present time series of these data, from which we identify and characterize three key periods. Finally, we put our observations in historical and regional contexts and compare our findings to other Arctic field campaigns.
Khadak Singh Mahata, Maheswar Rupakheti, Arnico Kumar Panday, Piyush Bhardwaj, Manish Naja, Ashish Singh, Andrea Mues, Paolo Cristofanelli, Deepak Pudasainee, Paolo Bonasoni, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 14113–14132, https://doi.org/10.5194/acp-18-14113-2018, https://doi.org/10.5194/acp-18-14113-2018, 2018
Short summary
Short summary
This paper presents the first-time simultaneous measurement of CO and O3 at multiple sites in the Kathmandu Valley bottom, its mountain rim and a river outlet, providing their spatial, temporal and seasonal–diurnal variations. Our study reveals that high O3, especially during premonsoon, in observed sites is of high concern for human health and ecosystems in the region. We also estimated CO emission flux to be 2–14 times higher than widely used emission databases (EDGAR HTAP, REAS and INTEX-B).
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018, https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
Short summary
This study provides information about the regional variabilities in some of the pollutants using observations in Nepal and India. It is shown that agricultural crop residue burning leads to a significant enhancement in ozone and CO over a wider region. Further, the wintertime higher ozone levels are shown to be largely due to local emissions, while regional transport could be important in spring and hence shows the role of regional sources versus local sources in the Kathmandu Valley.
Tim Butler, Aurelia Lupascu, Jane Coates, and Shuai Zhu
Geosci. Model Dev., 11, 2825–2840, https://doi.org/10.5194/gmd-11-2825-2018, https://doi.org/10.5194/gmd-11-2825-2018, 2018
Short summary
Short summary
This paper describes a method for determining origin of tropospheric ozone simulated in a global chemistry–climate model. This technique can show which precursor compounds were responsible for simulated ozone, and where they were emitted. In this paper we describe our technique, compare and contrast it with several other similar techniques, and use it to calculate the contribution of several different NOx and VOC precursor categories to the tropospheric ozone burden.
Erika von Schneidemesser, Boris Bonn, Tim M. Butler, Christian Ehlers, Holger Gerwig, Hannele Hakola, Heidi Hellén, Andreas Kerschbaumer, Dieter Klemp, Claudia Kofahl, Jürgen Kura, Anja Lüdecke, Rainer Nothard, Axel Pietsch, Jörn Quedenau, Klaus Schäfer, James J. Schauer, Ashish Singh, Ana-Maria Villalobos, Matthias Wiegner, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 8621–8645, https://doi.org/10.5194/acp-18-8621-2018, https://doi.org/10.5194/acp-18-8621-2018, 2018
Short summary
Short summary
This paper provides an overview of the measurements done at an urban background site in Berlin from June-August of 2014. Results show that natural source contributions to ozone and particulate matter (PM) air pollutants are substantial. Large contributions of secondary aerosols formed in the atmosphere to PM10 concentrations were quantified. An analysis of the sources also identified contributions to PM from plant-based sources, vehicles, and a small contribution from wood burning.
Friderike Kuik, Andreas Kerschbaumer, Axel Lauer, Aurelia Lupascu, Erika von Schneidemesser, and Tim M. Butler
Atmos. Chem. Phys., 18, 8203–8225, https://doi.org/10.5194/acp-18-8203-2018, https://doi.org/10.5194/acp-18-8203-2018, 2018
Short summary
Short summary
Modelled NOx concentrations are often underestimated compared to observations, and measurement studies show that reported NOx emissions in urban areas are often too low when the contribution from traffic is largest. This modelling study quantifies the underestimation of traffic NOx emissions in the Berlin–Brandenburg and finds that they are underestimated by ca. 50 % in the core urban area. More research is needed in order to more accurately understand real-world NOx emissions from traffic.
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018, https://doi.org/10.5194/gmd-11-2067-2018, 2018
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
D. Rupakheti, S. Kang, Z. Cong, M. Rupakheti, L. Tripathee, A. K. Panday, and B. Holben
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1493–1497, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, 2018
Xiaowan Zhu, Guiqian Tang, Jianping Guo, Bo Hu, Tao Song, Lili Wang, Jinyuan Xin, Wenkang Gao, Christoph Münkel, Klaus Schäfer, Xin Li, and Yuesi Wang
Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, https://doi.org/10.5194/acp-18-4897-2018, 2018
Short summary
Short summary
Our study first conducted a long-term observation of mixing layer height (MLH) with high resolution on the North China Plain (NCP), analyzed the spatiotemporal variations of regional MLH, investigated the reasons for MLH differences in the NCP and revealed the meteorological reasons for heavy haze pollution in southern Hebei. The study results provide scientific suggestions for regional industrial structure readjustment and have great importance for achieving the integrated development goals.
Paul Herenz, Heike Wex, Silvia Henning, Thomas Bjerring Kristensen, Florian Rubach, Anja Roth, Stephan Borrmann, Heiko Bozem, Hannes Schulz, and Frank Stratmann
Atmos. Chem. Phys., 18, 4477–4496, https://doi.org/10.5194/acp-18-4477-2018, https://doi.org/10.5194/acp-18-4477-2018, 2018
Short summary
Short summary
The Arctic climate is changing much faster than other regions on Earth. Hence, it is necessary to investigate the processes that are liable for this phenomena and to document the current situation in the Arctic. Therefore, we measured the number and also the size of aerosol particles. It turned out that we captured the transition from the Arctic spring to the Arctic summer and that the according air masses show differences in particle properties. Also, the particles have a low water receptivity.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Andrew Platt, Mike Elsasser, Lin Huang, Richard Leaitch, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Cheol-Heon Jeong, Jonathan P. D. Abbatt, and Greg J. Evans
Atmos. Chem. Phys., 18, 3485–3503, https://doi.org/10.5194/acp-18-3485-2018, https://doi.org/10.5194/acp-18-3485-2018, 2018
Short summary
Short summary
The sources of key contaminants in Arctic snow may be an important factor in understanding the rapid climate changes observed in the Arctic. Fresh snow samples collected frequently through the winter season were analyzed for major constituents. Temporally refined source apportionment via positive matrix factorization in conjunction with FLEXPART suggested potential source characteristics and locations. The identity of these sources and their relative contribution to key analytes is discussed.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Axel Lauer, Colin Jones, Veronika Eyring, Martin Evaldsson, Stefan Hagemann, Jarmo Mäkelä, Gill Martin, Romain Roehrig, and Shiyu Wang
Earth Syst. Dynam., 9, 33–67, https://doi.org/10.5194/esd-9-33-2018, https://doi.org/10.5194/esd-9-33-2018, 2018
Franziska Köllner, Johannes Schneider, Megan D. Willis, Thomas Klimach, Frank Helleis, Heiko Bozem, Daniel Kunkel, Peter Hoor, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 17, 13747–13766, https://doi.org/10.5194/acp-17-13747-2017, https://doi.org/10.5194/acp-17-13747-2017, 2017
Short summary
Short summary
We conducted aircraft-based single particle chemical composition measurements in the Canadian high Arctic during summer. Our results provide evidence for a marine-biogenic influence on secondary formation of particulate trimethylamine in the Arctic boundary layer. Understanding emission sources and further processes controlling aerosol number concentration and chemical composition in the pristine Arctic summer is crucial for modeling future climate in the area.
Astrid M. M. Manders, Peter J. H. Builtjes, Lyana Curier, Hugo A. C. Denier van der Gon, Carlijn Hendriks, Sander Jonkers, Richard Kranenburg, Jeroen J. P. Kuenen, Arjo J. Segers, Renske M. A. Timmermans, Antoon J. H. Visschedijk, Roy J. Wichink Kruit, W. Addo J. van Pul, Ferd J. Sauter, Eric van der Swaluw, Daan P. J. Swart, John Douros, Henk Eskes, Erik van Meijgaard, Bert van Ulft, Peter van Velthoven, Sabine Banzhaf, Andrea C. Mues, Rainer Stern, Guangliang Fu, Sha Lu, Arnold Heemink, Nils van Velzen, and Martijn Schaap
Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, https://doi.org/10.5194/gmd-10-4145-2017, 2017
Short summary
Short summary
The regional-scale air quality model LOTOS–EUROS has been developed by a consortium of Dutch institutes. Recently, version 2.0 of the model was released as an open-source version. Next to a technical description and model evaluation for 2012, this paper presents the model developments in context of the history of air quality modelling and provides an outlook for future directions. Key and innovative applications of LOTOS–EUROS are also highlighted.
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Khadak Singh Mahata, Arnico Kumar Panday, Maheswar Rupakheti, Ashish Singh, Manish Naja, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 12573–12596, https://doi.org/10.5194/acp-17-12573-2017, https://doi.org/10.5194/acp-17-12573-2017, 2017
Short summary
Short summary
The paper provides an overview of CH4, CO2, and CO mixing ratios, including diurnal and seasonal variation, and discusses the association of potential sources and meteorology with the observed temporal variation in the Kathmandu Valley. The study will provide an important dataset for a poorly studied region and will be useful for validating estimates from emission inventories, regional models, and satellite observations and assisting in the design of mitigation measures in the region.
Chaeyoon Cho, Sang-Woo Kim, Maheswar Rupakheti, Jin-Soo Park, Arnico Panday, Soon-Chang Yoon, Ji-Hyoung Kim, Hyunjae Kim, Haeun Jeon, Minyoung Sung, Bong Mann Kim, Seungkyu K. Hong, Rokjin J. Park, Dipesh Rupakheti, Khadak Singh Mahata, Puppala Siva Praveen, Mark G. Lawrence, and Brent Holben
Atmos. Chem. Phys., 17, 12617–12632, https://doi.org/10.5194/acp-17-12617-2017, https://doi.org/10.5194/acp-17-12617-2017, 2017
Short summary
Short summary
We investigated the optical and chemical properties and direct radiative effects of aerosols in the Kathmandu Valley. We concluded that the ratio of light-absorbing to scattering aerosols as well as the concentration of light-absorbing aerosols is much higher at Kathmandu than other comparable regions, and it contributes to a great atmospheric absorption efficiency. This study provides unprecedented insights into aerosol optical properties and their radiative forcings in the Kathmandu Valley.
Heiko Bozem, Andrea Pozzer, Hartwig Harder, Monica Martinez, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, https://doi.org/10.5194/acp-17-11835-2017, 2017
Short summary
Short summary
We present a case study of deep convection over Germany in July 2007 within the framework of the HOOVER II project. Airborne in situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Despite their high solubility HCHO and H2O2 show enhanced concentrations in the outflow presumably due to degassing from cloud droplets during freezing.
Marcus Klingebiel, André Ehrlich, Fanny Finger, Timo Röschenthaler, Suad Jakirlić, Matthias Voigt, Stefan Müller, Rolf Maser, Manfred Wendisch, Peter Hoor, Peter Spichtinger, and Stephan Borrmann
Atmos. Meas. Tech., 10, 3485–3498, https://doi.org/10.5194/amt-10-3485-2017, https://doi.org/10.5194/amt-10-3485-2017, 2017
Short summary
Short summary
Microphysical and radiation measurements were collected with the unique AIRcraft TOwed Sensor Shuttle (AIRTOSS) – Learjet tandem platform. It is a combination of a Learjet 35A research aircraft and an instrumented aerodynamic bird, which can be detached from and retracted back to the aircraft during flight.
AIRTOSS and Learjet are equipped with radiative, cloud microphysical, trace gas,
and meteorological instruments to study cirrus clouds.
Dipesh Rupakheti, Bhupesh Adhikary, Puppala Siva Praveen, Maheswar Rupakheti, Shichang Kang, Khadak Singh Mahata, Manish Naja, Qianggong Zhang, Arnico Kumar Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 11041–11063, https://doi.org/10.5194/acp-17-11041-2017, https://doi.org/10.5194/acp-17-11041-2017, 2017
Short summary
Short summary
For the first time, atmospheric composition was monitored during pre-monsoon season of 2013 at Lumbini (UNESCO world heritage site as birthplace of the Buddha). PM and O3 frequently exceeded WHO guidelines. Pollution concentration, diurnal characteristics and influence of open burning on air quality in Lumbini were investigated. Potential source regions were also identified. Results show that air pollution at this site is of a great concern, requiring prompt attention for mitigation.
Heiko Bozem, Tim M. Butler, Mark G. Lawrence, Hartwig Harder, Monica Martinez, Dagmar Kubistin, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 10565–10582, https://doi.org/10.5194/acp-17-10565-2017, https://doi.org/10.5194/acp-17-10565-2017, 2017
Short summary
Short summary
We present airborne measurements and model simulations in the tropics and mid-latitudes during GABRIEL and HOOVER, respectively. Based only on in situ data net ozone formation/destruction tendencies (NOPR) are calculated and compared to a 3-D chemistry transport model. The NOPR is positive in the continental boundary layer and the upper troposphere above 6 km. In the marine boundary layer and the middle troposphere ozone destruction prevails. Fresh convection shows strong net ozone formation.
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Alexander Geiß, Matthias Wiegner, Boris Bonn, Klaus Schäfer, Renate Forkel, Erika von Schneidemesser, Christoph Münkel, Ka Lok Chan, and Rainer Nothard
Atmos. Meas. Tech., 10, 2969–2988, https://doi.org/10.5194/amt-10-2969-2017, https://doi.org/10.5194/amt-10-2969-2017, 2017
Short summary
Short summary
Based on measurements with a ceilometer and from an air quality network, the relationship between the mixing layer height (MLH) and near surface concentrations of pollutants was investigated for summer 2014 in Berlin. It was found that the heterogeneity of the concentrations exceeds the differences due to different MLH retrievals. In particular for PM10 it seems to be unrealistic to find correlations between MLH and concentrations representative for an entire metropolitan area in flat terrain.
Xin Wan, Shichang Kang, Quanlian Li, Dipesh Rupakheti, Qianggong Zhang, Junming Guo, Pengfei Chen, Lekhendra Tripathee, Maheswar Rupakheti, Arnico K. Panday, Wu Wang, Kimitaka Kawamura, Shaopeng Gao, Guangming Wu, and Zhiyuan Cong
Atmos. Chem. Phys., 17, 8867–8885, https://doi.org/10.5194/acp-17-8867-2017, https://doi.org/10.5194/acp-17-8867-2017, 2017
Short summary
Short summary
Biomass burning (BB) tracers in the aerosols in Lumbini, northern IGP, were studied for the first time. The levoglucosan was the predominant tracer and BB significantly contributed to the air quality in Lumbini. Mixed crop residues and hardwood were main burning materials. BB emissions constituted large fraction of OC, especially during the post-monsoon season. The sources of BB aerosols in Lumbini varies seasonally due to the influence of local emissions and long-range transport.
Roya Ghahreman, Ann-Lise Norman, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Julia Burkart, Ofelia Rempillo, Heiko Bozem, Daniel Kunkel, Jennie L. Thomas, Amir A. Aliabadi, Gregory R. Wentworth, Maurice Levasseur, Ralf M. Staebler, Sangeeta Sharma, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 8757–8770, https://doi.org/10.5194/acp-17-8757-2017, https://doi.org/10.5194/acp-17-8757-2017, 2017
Short summary
Short summary
We present spring and summertime vertical profile measurements of Arctic dimethyl sulfide (DMS), together with model simulations to consider what these profiles indicate about DMS sources and lifetimes in the Arctic. Our results highlight the role of local open water as the source of DMS(g) during July 2014 and the influence of long-range transport of DMS(g) from further afield in the Arctic during April 2015.
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017, https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in the Kathmandu Valley. Combining high-resolution in situ NMVOC data and model analyses, we show that REAS v2.1 and EDGAR v4.2 emission inventories underestimate the contribution of traffic and do not take the contribution of brick kilns into account. Furthermore, REAS v2.1 overestimates the contribution of residential biofuel use and industries.
Kabindra M. Shakya, Maheswar Rupakheti, Anima Shahi, Rejina Maskey, Bidya Pradhan, Arnico Panday, Siva P. Puppala, Mark Lawrence, and Richard E. Peltier
Atmos. Chem. Phys., 17, 6503–6516, https://doi.org/10.5194/acp-17-6503-2017, https://doi.org/10.5194/acp-17-6503-2017, 2017
Short summary
Short summary
Particulate matter levels were monitored at six major roadway intersections in the Kathmandu Valley during two seasons in 2014. The study documented distinct seasonal (dry season versus wet season) and diel variations in particulate matter levels. This study suggests traffic-related emissions, and soil–dust–construction materials were found to be a major source of particulate matter at these locations.
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Sarah Hanna, Allan K. Bertram, Andrew Platt, Mike Elsasser, Lin Huang, David Tarasick, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 5775–5788, https://doi.org/10.5194/acp-17-5775-2017, https://doi.org/10.5194/acp-17-5775-2017, 2017
Short summary
Short summary
Rapid climate changes within the Arctic have highlighted existing uncertainties in the transport of contaminants to Arctic snow. Fresh snow samples collected frequently through the winter season were analyzed for major constituents creating a unique record of Arctic snow. Comparison with simultaneous atmospheric measurements provides insight into the driving processes in the transfer of contaminants from air to snow. The relative importance of deposition mechanisms over the season is proposed.
Julia Burkart, Megan D. Willis, Heiko Bozem, Jennie L. Thomas, Kathy Law, Peter Hoor, Amir A. Aliabadi, Franziska Köllner, Johannes Schneider, Andreas Herber, Jonathan P. D. Abbatt, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 5515–5535, https://doi.org/10.5194/acp-17-5515-2017, https://doi.org/10.5194/acp-17-5515-2017, 2017
Short summary
Short summary
Our aircraft study for the first time systematically investigates aerosol size distributions, including ultrafine particles (5–20 nm in diameter), in the Arctic summertime atmosphere. We find that ultrafine particles occur very frequently in the boundary layer and not aloft, suggesting a surface source of these particles. Understanding aerosol properties and sources is crucial to predict climate and especially important in the Arctic as this region responds extremely fast to climate change.
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017, https://doi.org/10.5194/acp-17-4031-2017, 2017
Quentin Libois, Liviu Ivanescu, Jean-Pierre Blanchet, Hannes Schulz, Heiko Bozem, W. Richard Leaitch, Julia Burkart, Jonathan P. D. Abbatt, Andreas B. Herber, Amir A. Aliabadi, and Éric Girard
Atmos. Chem. Phys., 16, 15689–15707, https://doi.org/10.5194/acp-16-15689-2016, https://doi.org/10.5194/acp-16-15689-2016, 2016
Short summary
Short summary
The first airborne measurements performed with the FIRR are presented. Vertical profiles of upwelling spectral radiance in the far-infrared are measured in the Arctic atmosphere for the first time. They show the impact of the temperature inversion on the radiative budget of the atmosphere, especially in the far-infrared. The presence of ice clouds also significantly alters the far-infrared budget, highlighting the critical interplay between water vapour and clouds in this very dry region.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Friderike Kuik, Axel Lauer, Galina Churkina, Hugo A. C. Denier van der Gon, Daniel Fenner, Kathleen A. Mar, and Tim M. Butler
Geosci. Model Dev., 9, 4339–4363, https://doi.org/10.5194/gmd-9-4339-2016, https://doi.org/10.5194/gmd-9-4339-2016, 2016
Short summary
Short summary
The study evaluates the performance of a setup of the Weather Research and Forecasting model with chemistry and aerosols (WRF–Chem) for the Berlin–Brandenburg region of Germany. Its sensitivity to updating urban input parameters based on structural data for Berlin is tested, specifying land use classes on a sub-grid scale, downscaling the original emissions to a resolution of ca. 1 km by 1 km for Berlin based on proxy data and model resolution.
Carolina Cavazos Guerra, Axel Lauer, Andreas B. Herber, Tim M. Butler, Annette Rinke, and Klaus Dethloff
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-942, https://doi.org/10.5194/acp-2016-942, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Accurate description of the Arctic atmosphere is a challenge for the modelling comunity. We evaluate the performance of the Weather Research and Forecast model (WRF) in the Eurasian Arctic and analyse the implications of data to initialise the model and a land surface scheme. The results show that biases can be related to the quality of data used and in the case of black carbon concentrations, to emission data. More long term measurements are need for model Validation in the area.
Kathleen A. Mar, Narendra Ojha, Andrea Pozzer, and Tim M. Butler
Geosci. Model Dev., 9, 3699–3728, https://doi.org/10.5194/gmd-9-3699-2016, https://doi.org/10.5194/gmd-9-3699-2016, 2016
Short summary
Short summary
Ground-level ozone is an air pollutant with adverse effects on human and ecosystem health and is also a climate forcer with a significant warming effect. This paper presents the setup and evaluation of a model for ozone air quality over Europe. Within the model evaluation, we compare the use of two commonly used photochemical schemes, and we conclude that uncertainties in the representation of chemistry are important to consider when using air quality models for policy applications.
Jane Coates, Kathleen A. Mar, Narendra Ojha, and Tim M. Butler
Atmos. Chem. Phys., 16, 11601–11615, https://doi.org/10.5194/acp-16-11601-2016, https://doi.org/10.5194/acp-16-11601-2016, 2016
Short summary
Short summary
This modelling study reproduced the non-linear relationship of ozone, NOx and temperature using various chemical mechanisms previously determined from observational studies. Under urban conditions, faster reaction rates rather than increased isoprene emissions led to a slightly greater increase of ozone with temperature using different NOx conditions. This study also shows that the increase of ozone with temperature is more sensitive to atmospheric mixing than the choice of chemical mechanism.
W. Richard Leaitch, Alexei Korolev, Amir A. Aliabadi, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, Heiko Bozem, Peter Hoor, Franziska Köllner, Johannes Schneider, Andreas Herber, Christian Konrad, and Ralf Brauner
Atmos. Chem. Phys., 16, 11107–11124, https://doi.org/10.5194/acp-16-11107-2016, https://doi.org/10.5194/acp-16-11107-2016, 2016
Short summary
Short summary
Thought to be mostly unimportant for summertime Arctic liquid-water clouds, airborne observations show that atmospheric aerosol particles 50 nm in diameter or smaller and most likely from natural sources are often involved in cloud formation in the pristine Arctic summer. The result expands the reference for aerosol forcing of climate. Further, for extremely low droplet concentrations, no evidence is found for a connection between cloud liquid water and aerosol particle concentrations.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7899–7916, https://doi.org/10.5194/acp-16-7899-2016, https://doi.org/10.5194/acp-16-7899-2016, 2016
Short summary
Short summary
For the first time, ship emissions of an ice-breaker, the Amundsen, is characterized while breaking ice in the Canadian Arctic using the plume intercepts by the Polar 6 aircraft. The study is novel, estimating lower plume expansion rates over the stable Arctic marine boundary layer and different emissions factors for oxides of nitrogen, black carbon, and carbon monoxide, compared to plume intercept studies in mid latitudes. These results can inform policy making and emission inventory datasets.
Boris Bonn, Erika von Schneidemesser, Dorota Andrich, Jörn Quedenau, Holger Gerwig, Anja Lüdecke, Jürgen Kura, Axel Pietsch, Christian Ehlers, Dieter Klemp, Claudia Kofahl, Rainer Nothard, Andreas Kerschbaumer, Wolfgang Junkermann, Rüdiger Grote, Tobias Pohl, Konradin Weber, Birgit Lode, Philipp Schönberger, Galina Churkina, Tim M. Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, https://doi.org/10.5194/acp-16-7785-2016, 2016
Short summary
Short summary
The distribution of air pollutants (gases and particles) have been investigated in different environments in Potsdam, Germany. Remarkable variations of the pollutants have been observed for distances of tens of meters by bicycles, vans and aircraft. Vegetated areas caused reductions depending on the pollutants, the vegetation type and dimensions. Our measurements show the pollutants to be of predominantly local origin, resulting in a huge challenge for common models to resolve.
Megan D. Willis, Julia Burkart, Jennie L. Thomas, Franziska Köllner, Johannes Schneider, Heiko Bozem, Peter M. Hoor, Amir A. Aliabadi, Hannes Schulz, Andreas B. Herber, W. Richard Leaitch, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7663–7679, https://doi.org/10.5194/acp-16-7663-2016, https://doi.org/10.5194/acp-16-7663-2016, 2016
Short summary
Short summary
We present a case study focused on an aerosol growth event observed in the Canadian High Arctic during summer. Using measurements of aerosol chemical and physical properties we find evidence for aerosol growth into cloud condensation nuclei-active sizes, through marine-influenced secondary organic aerosol formation. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties, and therefore radiative balance and climate.
Simone Dietmüller, Patrick Jöckel, Holger Tost, Markus Kunze, Catrin Gellhorn, Sabine Brinkop, Christine Frömming, Michael Ponater, Benedikt Steil, Axel Lauer, and Johannes Hendricks
Geosci. Model Dev., 9, 2209–2222, https://doi.org/10.5194/gmd-9-2209-2016, https://doi.org/10.5194/gmd-9-2209-2016, 2016
Short summary
Short summary
Four new radiation related submodels (RAD, AEROPT, CLOUDOPT, and ORBIT) are available within the MESSy framework now. They are largely based on the original radiation scheme of ECHAM5. RAD simulates radiative transfer, AEROPT calculates aerosol optical properties, CLOUDOPT calculates cloud optical properties, and ORBIT is responsible for Earth orbit calculations. Multiple diagnostic calls of the radiation routine are possible, so radiative forcing can be calculated during the model simulation.
Florian Berkes, Peter Hoor, Heiko Bozem, Daniel Kunkel, Michael Sprenger, and Stephan Henne
Atmos. Chem. Phys., 16, 6011–6025, https://doi.org/10.5194/acp-16-6011-2016, https://doi.org/10.5194/acp-16-6011-2016, 2016
Short summary
Short summary
We presented airborne measurements of CO2 and O3 across the entrainment zone over a semi-remote environment in southwestern Germany in late summer 2011 .
For the first time CO2 and O3 were used as tracer to identify mixing through this transport barrier. We demonstrated that the tracer--tracer correlation of CO2 and O3 is a powerful tool to identify entrainment and mixing.
Marje Prank, Mikhail Sofiev, Svetlana Tsyro, Carlijn Hendriks, Valiyaveetil Semeena, Xavier Vazhappilly Francis, Tim Butler, Hugo Denier van der Gon, Rainer Friedrich, Johannes Hendricks, Xin Kong, Mark Lawrence, Mattia Righi, Zissis Samaras, Robert Sausen, Jaakko Kukkonen, and Ranjeet Sokhi
Atmos. Chem. Phys., 16, 6041–6070, https://doi.org/10.5194/acp-16-6041-2016, https://doi.org/10.5194/acp-16-6041-2016, 2016
Short summary
Short summary
Aerosol composition in Europe was simulated by four chemistry transport models and compared to observations to identify the most prominent areas for model improvement. Notable differences were found between the models' predictions, attributable to different treatment or omission of aerosol sources and processes. All models underestimated the observed concentrations by 10–60 %, mostly due to under-predicting the carbonaceous and mineral particles and omitting the aerosol-bound water.
Veronika Eyring, Mattia Righi, Axel Lauer, Martin Evaldsson, Sabrina Wenzel, Colin Jones, Alessandro Anav, Oliver Andrews, Irene Cionni, Edouard L. Davin, Clara Deser, Carsten Ehbrecht, Pierre Friedlingstein, Peter Gleckler, Klaus-Dirk Gottschaldt, Stefan Hagemann, Martin Juckes, Stephan Kindermann, John Krasting, Dominik Kunert, Richard Levine, Alexander Loew, Jarmo Mäkelä, Gill Martin, Erik Mason, Adam S. Phillips, Simon Read, Catherine Rio, Romain Roehrig, Daniel Senftleben, Andreas Sterl, Lambertus H. van Ulft, Jeremy Walton, Shiyu Wang, and Keith D. Williams
Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, https://doi.org/10.5194/gmd-9-1747-2016, 2016
Short summary
Short summary
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) in CMIP has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations.
N. Sobanski, M. J. Tang, J. Thieser, G. Schuster, D. Pöhler, H. Fischer, W. Song, C. Sauvage, J. Williams, J. Fachinger, F. Berkes, P. Hoor, U. Platt, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 16, 4867–4883, https://doi.org/10.5194/acp-16-4867-2016, https://doi.org/10.5194/acp-16-4867-2016, 2016
Short summary
Short summary
The nitrate radical (NO3) is an important nocturnal oxidant. By measuring NO3, its precursors (nitrogen dioxide and ozone) and several trace gases with which it reacts, we examined the chemical and meteorological factors influencing the lifetime of NO3 at a semi-rural mountain site. Unexpectedly long lifetimes, approaching 1 h, were observed on several nights and were associated with a low-lying residual layer. We discuss the role of other reactions that convert NO2 to NO3.
Chinmoy Sarkar, Vinayak Sinha, Vinod Kumar, Maheswar Rupakheti, Arnico Panday, Khadak S. Mahata, Dipesh Rupakheti, Bhogendra Kathayat, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, https://doi.org/10.5194/acp-16-3979-2016, 2016
Short summary
Short summary
First deployment of PTR-TOF-MS in South Asia. High acetaldehyde and biogenic isoprene concentrations detected even in winter in the Kathmandu Valley. Isocyanic acid, formamide, acetamide, naphthalene and nitromethane were detected for the first time in South Asian air. Oxygenated VOCs and isoprene-dominated OH reactivity and ozone production potentials (> 68 % OPP). Regulation of emissions from biomass co-fired brick kilns' by cleaner technology would improve air quality of the valley.
Peng Fei Chen, Chao Liu Li, Shi Chang Kang, Maheswar Rupakheti, Arnico K. Panday, Fang Ping Yan, Quan Lian Li, Qiang Gong Zhang, Jun Ming Guo, Dipesh Rupakheti, and Wei Luo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-71, https://doi.org/10.5194/acp-2016-71, 2016
Revised manuscript not accepted
Short summary
Short summary
PAHs were measured at six sites along two south-north transects across the central Himalayas. The annual average PAHs and their dry deposition fluxes decreased noticeably from the south to north sides, however, a similar compostion pattern was found at three remote sites, suggesting the northern slope of the Himalayas may be affected by anthropogenic emissions form Indo-Gangetic Plain. PAHs showed a clear seasonal variation at Nepal and they were mainly form biomass and fossil combustion .
Guiqian Tang, Jinqiang Zhang, Xiaowan Zhu, Tao Song, Christoph Münkel, Bo Hu, Klaus Schäfer, Zirui Liu, Junke Zhang, Lili Wang, Jinyuan Xin, Peter Suppan, and Yuesi Wang
Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, https://doi.org/10.5194/acp-16-2459-2016, 2016
Short summary
Short summary
This is the first paper to validate and characterize mixing layer height and discuss its relationship with air pollution, using a ceilometer in Beijing. The novelty, originality, and importance of this paper are as follows: (1) the applicable conditions of the ceilometer; (2) the variations of mixing layer height; (3) thermal/dynamic structure inside mixing layers with different degrees of pollution; and (4) critical meteorological conditions for the formation of heavy air pollution.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
D. Kunkel, P. Hoor, and V. Wirth
Atmos. Chem. Phys., 16, 541–560, https://doi.org/10.5194/acp-16-541-2016, https://doi.org/10.5194/acp-16-541-2016, 2016
Short summary
Short summary
By conducting various simulations of dry and moist baroclinic life cycles, we aimed to improve the understanding of whether dynamical or diabatic processes are more relevant to form a tropopause inversion layer at midlatitudes. Most importantly, our experiments highlighted the role of different moisture related processes for the formation and evolution of the tropopause inversion layer with varying relevance and strength in different phases of the baroclinic life cycles.
Christiane Hofmann, Astrid Kerkweg, Peter Hoor, and Patrick Jöckel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-949, https://doi.org/10.5194/acp-2015-949, 2016
Revised manuscript not accepted
Short summary
Short summary
Ozone enhancements at the surface, caused by descending stratospheric air masses along deep tropopause folds, can be reproduced using the model system MECO(n). It is shown that stratosphere-troposphere-exchange (STE) in the vicinity of a tropopause fold occurs in regions of turbulence and diabatic processes. The efficiency of mixing is quantified, showing that almost all of the air masses originating in the tropopause fold are transported into the troposphere during the following two days.
D. Putero, P. Cristofanelli, A. Marinoni, B. Adhikary, R. Duchi, S. D. Shrestha, G. P. Verza, T. C. Landi, F. Calzolari, M. Busetto, G. Agrillo, F. Biancofiore, P. Di Carlo, A. K. Panday, M. Rupakheti, and P. Bonasoni
Atmos. Chem. Phys., 15, 13957–13971, https://doi.org/10.5194/acp-15-13957-2015, https://doi.org/10.5194/acp-15-13957-2015, 2015
Short summary
Short summary
The aim of this paper is to present a full-year analysis of simultaneous measurements of ozone, black carbon, and aerosol number concentration at Paknajol, in the Kathmandu Valley, one of the global “hot spots” in terms of air pollution. Results indicate persisting poor air quality conditions throughout the measurement period, and suggest that the pollutants' variability is mainly driven by local pollution source activity, local- and large-scale dynamics, photochemistry, and vegetation fires.
G. Tang, X. Zhu, B. Hu, J. Xin, L. Wang, C. Münkel, G. Mao, and Y. Wang
Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, https://doi.org/10.5194/acp-15-12667-2015, 2015
Short summary
Short summary
The manuscript is the first paper to validate and discuss the high-resolution vertical profiles of aerosols using a ceilometer in Beijing, China. We introduce the contribution of aerosols during different air pollution episodes in Beijing. Also, we seize the opportunity of emission reduction during APEC to study the contribution of aerosols. The results are helpful to provide guidance in redefining coordinated emission control strategies to control the regional pollution over northern China.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
F. Kuik, A. Lauer, J. P. Beukes, P. G. Van Zyl, M. Josipovic, V. Vakkari, L. Laakso, and G. T. Feig
Atmos. Chem. Phys., 15, 8809–8830, https://doi.org/10.5194/acp-15-8809-2015, https://doi.org/10.5194/acp-15-8809-2015, 2015
Short summary
Short summary
The numerical model WRF-Chem is used to estimate the contribution of anthropogenic emissions to BC, aerosol optical depth and atmospheric heating rates over southern Africa. An evaluation of the model with observational data including long-term BC measurements shows that the basic meteorology is reproduced reasonably well but simulated near-surface BC concentrations are underestimated by up to 50%. It is found that up to 100% of the BC in highly industrialized regions is of anthropogenic origin.
J. Coates and T. M. Butler
Atmos. Chem. Phys., 15, 8795–8808, https://doi.org/10.5194/acp-15-8795-2015, https://doi.org/10.5194/acp-15-8795-2015, 2015
Short summary
Short summary
We show that simplified chemical mechanisms break down VOC into smaller sized degradation products on the first day faster than the near-explicit MCM chemical mechanism which would lead to an underprediction of ozone levels downwind of VOC emissions, and an underestimation of the VOC contribution to tropospheric background ozone when using simplified chemical mechanisms in regional or global modelling studies.
W. Frey, R. Schofield, P. Hoor, D. Kunkel, F. Ravegnani, A. Ulanovsky, S. Viciani, F. D'Amato, and T. P. Lane
Atmos. Chem. Phys., 15, 6467–6486, https://doi.org/10.5194/acp-15-6467-2015, https://doi.org/10.5194/acp-15-6467-2015, 2015
Short summary
Short summary
This study examines the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system, using the WRF model. Passive tracers are initialised to study the impact of the deep convection on the tracers and water vapour. We use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.
Z. L. Lüthi, B. Škerlak, S.-W. Kim, A. Lauer, A. Mues, M. Rupakheti, and S. Kang
Atmos. Chem. Phys., 15, 6007–6021, https://doi.org/10.5194/acp-15-6007-2015, https://doi.org/10.5194/acp-15-6007-2015, 2015
Short summary
Short summary
The Himalayas and the Tibetan Plateau region (HTP) is regularly exposed to polluted air masses that might influence glaciers as well as climate on regional to global scales. We found that atmospheric brown clouds from South Asia reach the HTP by crossing the Himalayas not only through the major north--south river valleys but rather over large areas by being lifted and advected at mid-troposheric levels. The transport is enabled by a combination of synoptic and local meteorological settings.
L. Drinovec, G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, and A. D. A. Hansen
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, https://doi.org/10.5194/amt-8-1965-2015, 2015
Short summary
Short summary
We present a new real-time algorithm for compensation of the filter-loading effect in filter photometers, based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier aethalometer models and other filter-based absorption photometers.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
H. Bozem, H. Fischer, C. Gurk, C. L. Schiller, U. Parchatka, R. Koenigstedt, A. Stickler, M. Martinez, H. Harder, D. Kubistin, J. Williams, G. Eerdekens, and J. Lelieveld
Atmos. Chem. Phys., 14, 8917–8931, https://doi.org/10.5194/acp-14-8917-2014, https://doi.org/10.5194/acp-14-8917-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
A. Mues, J. Kuenen, C. Hendriks, A. Manders, A. Segers, Y. Scholz, C. Hueglin, P. Builtjes, and M. Schaap
Atmos. Chem. Phys., 14, 939–955, https://doi.org/10.5194/acp-14-939-2014, https://doi.org/10.5194/acp-14-939-2014, 2014
Z. S. Stock, M. R. Russo, T. M. Butler, A. T. Archibald, M. G. Lawrence, P. J. Telford, N. L. Abraham, and J. A. Pyle
Atmos. Chem. Phys., 13, 12215–12231, https://doi.org/10.5194/acp-13-12215-2013, https://doi.org/10.5194/acp-13-12215-2013, 2013
J. Yoon, A. Pozzer, P. Hoor, D. Y. Chang, S. Beirle, T. Wagner, S. Schloegl, J. Lelieveld, and H. M. Worden
Atmos. Chem. Phys., 13, 11307–11316, https://doi.org/10.5194/acp-13-11307-2013, https://doi.org/10.5194/acp-13-11307-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
M. D. Andrés-Hernández, D. Kartal, J. N. Crowley, V. Sinha, E. Regelin, M. Martínez-Harder, V. Nenakhov, J. Williams, H. Harder, H. Bozem, W. Song, J. Thieser, M. J. Tang, Z. Hosaynali Beigi, and J. P. Burrows
Atmos. Chem. Phys., 13, 5731–5749, https://doi.org/10.5194/acp-13-5731-2013, https://doi.org/10.5194/acp-13-5731-2013, 2013
S. M. Burrows, P. J. Rayner, T. Butler, and M. G. Lawrence
Atmos. Chem. Phys., 13, 5473–5488, https://doi.org/10.5194/acp-13-5473-2013, https://doi.org/10.5194/acp-13-5473-2013, 2013
D. Kunkel, H. Tost, and M. G. Lawrence
Atmos. Chem. Phys., 13, 4203–4222, https://doi.org/10.5194/acp-13-4203-2013, https://doi.org/10.5194/acp-13-4203-2013, 2013
J. Lelieveld, M. G. Lawrence, and D. Kunkel
Atmos. Chem. Phys., 13, 31–34, https://doi.org/10.5194/acp-13-31-2013, https://doi.org/10.5194/acp-13-31-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of boundary layer stability on urban park cooling effect intensity
Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements
Measurement report: The promotion of the low-level jet and thermal effects on the development of the deep convective boundary layer at the southern edge of the Taklimakan Desert
Estimating scalar turbulent fluxes with slow-response sensors in the stable atmospheric boundary layer
Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)3 aircraft campaign
Contrasting extremely warm and long-lasting cold air anomalies in the North Atlantic sector of the Arctic during the HALO-(𝒜 𝒞)3 campaign
Air–sea interactions in stable atmospheric conditions: lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation
Thermodynamic and kinematic drivers of atmospheric boundary layer stability in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
Occurrence frequency of subcritical Richardson numbers assessed by global high-resolution radiosonde and ERA5 reanalysis
The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC
Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Evolution of turbulent kinetic energy during the entire sandstorm process
Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Momentum fluxes from airborne wind measurements in three cumulus cases over land
Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean
Opinion: Gigacity – a source of problems or the new way to sustainable development
The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Turbulent and boundary layer characteristics during VOCALS-REx
A foehn-induced haze front in Beijing: observations and implications
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?
Recent trends in climate variability at the local scale using 40 years of observations: the case of the Paris region of France
Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign
Low-level stratiform clouds and dynamical features observed within the southern West African monsoon
Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability
On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Characterizing wind gusts in complex terrain
Long-term trends of instability and associated parameters over the Indian region obtained using a radiosonde network
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study
Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes
Characteristics and evolution of diurnal foehn events in the Dead Sea valley
High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions
Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
Atmos. Chem. Phys., 24, 14101–14122, https://doi.org/10.5194/acp-24-14101-2024, https://doi.org/10.5194/acp-24-14101-2024, 2024
Short summary
Short summary
This study highlights how the state of the urban atmospheric boundary layer impacts urban park cooling effect intensity at night. Under summertime heat wave conditions, the urban atmosphere becomes stable at night, which inhibits turbulent motions. Under those specific conditions, urban parks and woods cool much more efficiently than the surrounding built-up neighbourhoods in the evening and through the night, providing cooler air temperatures by 4 to 6° C depending on park size.
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska
Atmos. Chem. Phys., 24, 13231–13251, https://doi.org/10.5194/acp-24-13231-2024, https://doi.org/10.5194/acp-24-13231-2024, 2024
Short summary
Short summary
This work concerns analysis of turbulence in the atmospheric boundary layer shortly before sunset. Based on a large set of measurements at a rural and an urban site, we analyze how turbulence properties change in time during rapid decay of convection. We explain the observations using recent theories of non-equilibrium turbulence. The presence of non-equilibrium suggests that classical parametrization schemes fail to predict turbulence statistics shortly before sunset.
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024, https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Short summary
The cold downhill airflow of the Tibetan Plateau leading to the low-level jet weakens the height and intensity of the inversion layer, which reduces the energy demand for the broken inversion layer. The low-level jet causes dust aerosols to accumulate near the ground. The material conditions for the development of the desert atmospheric boundary layer can be quickly transformed into thermal conditions.
Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024, https://doi.org/10.5194/acp-24-9697-2024, 2024
Short summary
Short summary
The significance of surface–atmosphere exchanges of aerosol species to atmospheric composition is underscored by their rising concentrations that are modulating the Earth's climate and having detrimental consequences for human health and the environment. Estimating these exchanges, using field measurements, and offering alternative models are the aims here. Limitations in measuring some species misrepresent their actual exchanges, so our proposed models serve to better quantify them.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024, https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Short summary
Observations collected during MOSAiC were used to identify the range in vertical structure and stability of the central Arctic lower atmosphere through a self-organizing map analysis. Characteristics of wind features (such as low-level jets) and atmospheric moisture features (such as clouds) were analyzed in the context of the varying vertical structure and stability. Thus, the results of this paper give an overview of the thermodynamic and kinematic features of the central Arctic atmosphere.
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023, https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
Short summary
The height of the mixing layer is an important measure of the surface-level distribution of energy or other substances. The experimental determination of this height is associated with large uncertainties, particularly under stable conditions that we often find during the polar night or in the presence of clouds. We present a reference method using turbulence measurements on a tethered balloon, which allows us to evaluate approaches based on radiosondes or surface observations.
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023, https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are strong winds near the surface and occur frequently in the Arctic in stable conditions. Using tethered-balloon profile measurements in Greenland, we analyze a multi-hour period with an LLJ that later weakens and finally collapses. Increased shear-induced turbulence at the LLJ bounds mostly does not reach the ground until the LLJ collapses. Our findings support the hypothesis that a passive tracer can be advected with an LLJ and mixed down when the LLJ collapses.
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023, https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary
Short summary
The interaction between biomass burning aerosols and clouds remains challenging to accurately determine from observations. This is in part because of difficulties distinguishing aerosol differences due to precipitation versus dilution processes from the observations. This study addresses the challenge by utilizing atmospheric heavy water isotope ratios to constrain mixing versus precipitation processes during a field campaign (ORACLES) and in turn explain observed aerosol concentrations.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023, https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary
Short summary
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to determine the frequency of occurrence of various central Arctic lower atmospheric stability regimes and how the stability regimes transition between each other. Wind and radiation observations were analyzed in the context of stability regime and season to reveal the relationships between Arctic atmospheric stability and mechanically and radiatively driven turbulent forcings.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023, https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Short summary
A high daily variability of the normalized vertical velocity variance profiles in the convective boundary layer is observed using Doppler lidar data during the FESSTVaL campaign 2020–2021. The dependency of the normalized vertical velocity variance on several meteorological parameters explains that the moisture processes in the boundary layer contribute to the remaining variability. The finding suggests that a new vertical velocity scale that takes moist processes into account has to be defined.
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023, https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
Short summary
The vertical motion over the Tibetan Plateau (TP) is associated with the anomalous convective activities. The diurnal variations and formation mechanisms of low clouds over the TP, Rocky Mountains and low-elevation regions are analyzed. We further discuss whether there exists a
high-efficiencytriggering mechanism for convection over the TP and whether there is an association among low air density and strong turbulence and ubiquitous popcorn-like cumulus clouds.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023, https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Short summary
Previous studies have noted a significant relationship between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices, but little is known about the stability of their relationship. We found a significant positive correlation between the two indices prior to the year 2000 but an insignificant correlation afterwards.
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022, https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Short summary
This paper helps to improve the recognition of severe thunderstorms in advance by giving a general understanding of how long the storm lasts, how fast the cluster moves and how much area the storm affects via information about the kinematic features of thunderstorms, which are the duration, valid area, the velocity, the direction and the farthest distance, and ideally to establish a foundation for future research that may contribute to the development of a new or improved prediction paradigm.
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022, https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary
Short summary
The sandstorm, which is a common natural disaster, is mechanically characterized by a particle-laden flow experiencing wall turbulence. This work investigates a real sandstorm that was measured at the Qingtu Lake Observation Array through a lens of wall-turbulent flow dynamics. A non-stationary signal processing method is proposed based on the time-varying mean and adaptive segmented stationary method, and the evolution of turbulent kinetic energy during the entire sandstorm process is revealed.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022, https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
Short summary
We are interested in the prediction of condensation trails, in particular strong ones. For this we need a good forecast of temperature and humidity in the levels where aircraft cruise. Unfortunately, the humidity forecast is quite difficult for these levels, in particular the ice supersaturation, which is needed for long-lasting contrails. We are thus seeking proxy variables that help distinguish situations where strong contrails can form, for instance the lapse rate.
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Markku Kulmala, Tom V. Kokkonen, Juha Pekkanen, Sami Paatero, Tuukka Petäjä, Veli-Matti Kerminen, and Aijun Ding
Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021, https://doi.org/10.5194/acp-21-8313-2021, 2021
Short summary
Short summary
The eastern part of China as a whole is practically a gigacity with 650 million inhabitants. The gigacity, with its emissions, processes in the pollution cocktail and numerous feedbacks and interactions, has a crucial and big impact on regional air quality and on global climate. A large-scale research and innovation program is needed to meet the interlinked grand challenges in this gigacity and to serve as a platform for finding pathways for sustainable development of the globe.
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021, https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021, https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
Short summary
The results here reinforce findings from previous in situ studies of the marine boundary layer. It is found that turbulence is maximized in the middle of the stratocumulus layer from latent heating effects. Precipitation acts to increase turbulence in the sub-cloud layer, while acting to stabilize the entire boundary layer after the evaporation of precipitation in the sub-cloud has stopped. A negative correlation is present between the boundary layer height and turbulence.
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Short summary
Gravity waves are an important coupling mechanism in the atmosphere. Measurements by two research aircraft during a mountain wave event over Scandinavia in 2016 revealed changes of the horizontal scales in the vertical velocity field and of momentum fluxes in the vicinity of the tropopause inversion. Idealized simulations revealed the presence of interfacial waves. They are found downstream of the mountain peaks, meaning that they horizontally transport momentum/energy away from their source.
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020, https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary
Short summary
The objective of this study was to conduct observational evaluations of the daily cycle of the height of the planetary boundary layer from data that were measured and/or estimated using instruments such as a radiosonde, sodar, ceilometer, wind profiler, lidar and microwave radiometer installed in the central Amazon during 2014 (considered a typical year) and 2015 during which an intense El Niño–Southern Oscillation (ENSO) event predominated during the GoAmazon experiment.
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020, https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
Short summary
In this study, data collected during four deep convection events at the 80 m tower from the Amazon Tall Tower Observatory are analyzed. It provides a unique view on how such events affect the local boundary layer and how it recovers after their passage. Quantities analyzed include mean wind speed, virtual potential temperature, turbulent kinetic energy, sensible, and latent heat fluxes. A conceptual model for boundary layer structure along the passage of deep convection events is proposed.
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019, https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary
Short summary
Ozone occurs both in the stratosphere and at ground level. Surface ozone is a man-made air pollutant and has harmful effects on people and the environment. Two dominant patterns of summer ozone pollution were determined. The most dominant pattern in 2017 and 2018 was different from that in previous years. The findings of this study help us to understand the features of surface ozone pollution in eastern China and their relationships with large-scale atmospheric circulations.
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Short summary
This study investigates differences in atmospheric conditions between nights with and without low-level stratus clouds (LLCs) over southern West Africa. We use high-quality observations collected during 2016 summer monsoon season and the ERA5 reanalysis data set. Our results show that the formation of LLCs depends on the interplay between the onset time and strength of the nocturnal low-level jet, horizontal cold-air advection, and the overall moisture level in the whole region.
Justine Ringard, Marjolaine Chiriaco, Sophie Bastin, and Florence Habets
Atmos. Chem. Phys., 19, 13129–13155, https://doi.org/10.5194/acp-19-13129-2019, https://doi.org/10.5194/acp-19-13129-2019, 2019
Short summary
Short summary
This study characterizes the changes observed at Paris urban scale and attempts to identify the surface–atmosphere feedbacks likely to explain the trends observed as a function of the different configurations of large-scale dynamics. This article is interested in several atmospheric parameters and their possible retroactions. Finally, to study urban environments, the analysis at the local scale is essential because it is very poorly represented in the model.
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019, https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Short summary
This study helps improve the understanding of the turbulence description and the interactions occurring in the lower part of the boundary layer. It is carried out at an orographically influenced site close to the Pyrenees to explore the hockey-stick transition (HOST) theory. HOST is seen to be strongly dependent on both the meteorological conditions and the orographic features. Examples of intermittent turbulence events that lead to transitions between the turbulence regimes are also identified.
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Short summary
Low atmospheric dynamics and low-level cloud (LLC) macrophysical properties are analyzed using in situ and remote sensing data collected from 20 June to 30 July at Savè, Benin, during the DACCIWA field campaign in 2016. We find that the low-level jet (LLJ), LLCs, monsoon flow, and maritime inflow reveal a day-to-day variability. LLCs form at the same level as the jet core height. The cloud base height is stationary at night and remains below the jet. The cloud top height is found above the jet.
Dani J. Caputi, Ian Faloona, Justin Trousdell, Jeanelle Smoot, Nicholas Falk, and Stephen Conley
Atmos. Chem. Phys., 19, 4721–4740, https://doi.org/10.5194/acp-19-4721-2019, https://doi.org/10.5194/acp-19-4721-2019, 2019
Short summary
Short summary
This paper covers the importance of understanding ozone pollution in California’s southern San Joaquin Valley from the perspective of meteorological conditions that occur overnight. Our main finding is that stronger winds aloft allow ozone to be depleted overnight, leading to less ozone the following day. This finding has the potential to greatly improve ozone forecasts in the San Joaquin Valley. This study is primarily conducted with aircraft observations.
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019, https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Short summary
To improve the parameterization of the turbulence dissipation rate (ε) in numerical weather prediction models, we have assessed its temporal and spatial variability at various scales in the Columbia River Gorge during the WFIP2 field experiment. The turbulence dissipation rate shows large spatial variability, even at the microscale, with larger values in sites located downwind of complex orographic structures or in wind farm wakes. Distinct diurnal and seasonal cycles in ε have also been found.
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019, https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Short summary
Wind gusts are a key driver of aerodynamic loading, and common approximations used to describe wind gust behavior may not be appropriate in complex terrain at heights relevant to wind turbines and other structures. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars collected in the Perdigão experiment are analyzed to provide a foundation for improved wind gust characterization in complex terrain.
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, https://doi.org/10.5194/acp-19-3687-2019, 2019
Short summary
Short summary
Intense convective phenomena are a common climatic feature in the Indian tropical region which occur during the pre-monsoon to post-monsoon seasons (April–October) and are generally accompanied by intense thunderstorms, lightning, and wind gusts with heavy rainfall. Here we show long-term trends of the parameters related to convection and instability obtained from 27 radiosonde stations across six subdivisions over the Indian region during the period 1980–2016.
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019, https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
Short summary
The recent cooling of the equatorial eastern Pacific Ocean occurred in conjunction with enhanced cross-equatorial southerlies associated with a strengthening of the boreal summer Hadley circulation. A combination of land surface warming and reduced static stability in the tropical tropopause layer due to stratospheric cooling is suggested to have caused the increase in the deep ascending branch of the Hadley circulation and related recent decadal change in the tropical troposphere and ocean.
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Short summary
The first detailed observational analysis of the complete diurnal cycle of low-level clouds (LLC) and associated atmospheric processes over southern West Africa is performed using the data gathered within the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based campaign. We find cooling related to the horizontal advection, which occurs in connection with the inflow of cool maritime air mass and a prominent low-level jet, to have the dominant role in LLC formation.
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
Short summary
This study deals with nocturnal stratiform low-level clouds that frequently form in the atmospheric boundary layer over southern West Africa. We use observational data from 11 nights to characterize the clouds and intranight variability of boundary layer conditions as well as to assess the physical processes relevant for cloud formation. We find that cooling is crucial to reach saturation and a large part of the cooling is related to horizontal advection of cool air from the Gulf of Guinea.
Jutta Vüllers, Georg J. Mayr, Ulrich Corsmeier, and Christoph Kottmeier
Atmos. Chem. Phys., 18, 18169–18186, https://doi.org/10.5194/acp-18-18169-2018, https://doi.org/10.5194/acp-18-18169-2018, 2018
Short summary
Short summary
This paper investigates frequently occurring foehn at the Dead Sea, which strongly impacts the local climatic conditions, in particular temperature and humidity, as well as evaporation from the Dead Sea, the aerosol load, and visibility. A statistical classification exposes two types of foehn and first-time, high-resolution measurements reveal trigger mechanisms and relevant characteristics, such as wind velocities, affected air layers, and resulting phenomena such as hydraulic jumps and rotors.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018, https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
Short summary
This study reports on the urban heat island (UHI) in a typical Arctic city in winter. Using in situ observations, remote sensing data and modeling, we show that the urban temperature anomaly reaches up to 11 K with a mean value of 1.9 K. At least 50 % of this anomaly is caused by the UHI effect, driven mostly by heating. The rest is created by natural microclimatic variability over the hilly terrain. This is a strong argument in support of energy efficiency measures in the Arctic cities.
Cited articles
Aryal, R. K., Lee, B. K., Karki, R., Gurung, A., Baral, B., and Byeon, S. H.: Dynamics of PM2.5 concentrations in Kathmandu Valley, Nepal, Journal of Hazardous Materials, 168, 732–738, https://doi.org/10.1016/j.jhazmat.2009.02.086, 2009.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Cape, J. N., Coyle, M., and Dumitrean, P.: The atmospheric lifetime of black carbon, Atmos. Environ., 59, 256–263, https://doi.org/10.1016/j.atmosenv.2012.05.030, 2012.
Chen, P., Li, C., Kang, S., Yan, F., Zhang, Q., Ji, Z., Tripathee, L., Rupakheti, D., Rupakheti, M., Qu, B., and Sillanpää, M.: Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model, Atmos. Res., 182, 46–53, https://doi.org/10.1016/j.atmosres.2016.07.011, 2016.
Drinovec, L., Mocnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Emeis, S., Schäfer, K., and Münkel, C.: Surface-based remote sensing of the mixing-layer height – A review, Meteorol. Z., 17, 621–630, https://doi.org/10.1127/0941-2948/2008/0312, 2008.
Emeis, S., Schäfer, K., Münkel, C., Friedl, R., and Suppan, P.: Evaluation of the Interpretation of Ceilometer Data with RASS and Radiosonde Data, Bound.-Lay. Meteorol., 143, 25–35, 2012.
Eresmaa, N., Karppinen, A., Joffre, S. M., Räsänen, J., and Talvitie, H.: Mixing height determination by ceilometer, Atmos. Chem. Phys., 6, 1485–1493, https://doi.org/10.5194/acp-6-1485-2006, 2006.
Fast, J. D., Gustafson Jr, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005
Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Fry, S., Gobbi, G. P., Lolli, S., O'Dowd, C. D., Sauvage, L., Xueref-Rèmy, I., Wastine, B., and Feist, D. G.: Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe, Bound.-Lay. Meteorol., 143, 49–75, https://doi.org/10.1007/s10546-011-9643-z, 2012.
Hansen, A. D. A., Rosen, H., and Novakov, T.: Real-time measurement of the aerosol absoprtion-coefficient of aerosol particles, Appl. Optics, 21, 3060–3062, 1982.
Hansen, A. D. A., Rosen, H., and Novakov, T.: The aethalometer – an instrument for the real-time measurement of optical absorption by aerosol particles, Sci. Total Environ., 36, 191–196, 1984.
Helmis, C. G., Sgouros, G., Tombrou, M., Schäfer, K., Münkel, C., Bossioli, E., and Dandou, A.: A Comparative Study and Evaluation of Mixing-Height Estimation Based on Sodar-RASS, Ceilometer Data and Numerical Model Simulations, Bound.-Lay. Meteorol., 145, 507–526, https://doi.org/10.1007/s10546-012-9743-4, 2012.
Janssens-Maenhout, G., Dentener, F., van Aardenne, J., Monni, S., Pagliari, V., Orlandini, L., Klimont, Z., Kurokawa, J., Akimoto, H., Ohara, T., Wankmüller, R., Battye, B., Grano, D., Zuber, A., and Keating, T.: EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories, Tech. Rep. JRC68434, Publications Office of the European Union, available at: https://doi.org/10.2788/14102 (last access: January 2017), 2000.
Ketterer, C., Zieger, P., Bukowiecki, N., Collaud Coen, M., Maier, O., Ruffieux, D., and Weingartner, E.: Investigation of the Planetary Boundary Layer in the Swiss Alps Using Remote Sensing and In Situ Measurements, Bound.-Lay. Meteorol., 151, 317–334, https://doi.org/10.1007/s10546-013-9897-8, 2014.
Kotthaus, S., O'Connor, E., Münkel, C., Charlton-Perez, C., Haeffelin, M., Gabey, A. M., and Grimmond, C. S. B.: Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers, Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, 2016.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013.
Münkel, C.: Mixing height determination with lidar ceilometers – results from Helsinki Testbed, Meteorol. Z., 16, 451–459, https://doi.org/10.1127/0941-2948/2007/0221, 2007.
Münkel, C. and Roininen, R.: Automatic monitoring of boundary layer structures with ceilometers, Vaisala News 184, 2010.
Münkel, C., Schäfer, K., and Emeis, S.: Adding confidence levels and error bars to mixing layer heights detected by ceilometer, Proc. SPIE, 8177, https://doi.org/10.1117/12.898122, 2011.
Panday, A. K. and Prinn, R. G.: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD009777, 2009.
Panday, A. K., Prinn, R. G., and Schär, C.: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD009808, 2009.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Putero, D., Cristofanelli, P., Marinoni, A., Adhikary, B., Duchi, R., Shrestha, S. D., Verza, G. P., Landi, T. C., Calzolari, F., Busetto, M., Agrillo, G., Biancofiore, F., Di Carlo, P., Panday, A. K., Rupakheti, M., and Bonasoni, P.: Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal, Atmos. Chem. Phys., 15, 13957–13971, https://doi.org/10.5194/acp-15-13957-2015, 2015.
Regmi, R., Kitada, T., and Kurata, G.: Numerical simulation of Late wintertime local flows in Kathmandu Valley, Nepal: Implication for air pollution transport, J. Appl. Meteorol., 42, 404–416, 2003.
Rupakheti, M., Panday, A. K., Lawrence, M. G., Kim, S. W., Sinha, V., Kang, S. C., Naja, M., Park, J. S., Hoor, P., Holben, B., Sharma, R. K., Mues, A., Mahata, K. S., Bhardwaj, P., Sarkar, C., Rupakheti, D., Regmi, R. P., and Gustafsson, Ö.: Air pollution in the Himalayan foothills: overview of the SusKat-ABC international air pollution measurement campaign in Nepal, Atmos. Chem. Phys., in preparation, 2017
Sandeep, P., Saradhi, I. V., and Pandit, G. G.: Seasonal variation of black carbon in fine particulate matter (PM 2.5) at the tropical coastal city of Mumbai, India, Bulletin of Environmental Contamination and Toxicology, 91, 605–610, https://doi.org/10.1007/s00128-013-1108-2, 2013.
Sarkar, C., Sinha, V., Kumar, V., Rupakheti, M., Panday, A., Mahata, K. S., Rupakheti, D., Kathayat, B., and Lawrence, M. G.: Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley, Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, 2016.
Sharma, R. K., Bhattarai, B. K., Sapkota, B., Gewali, M. B., and Kjeldstad, B.: Variation of Black Carbon Aerosols on Six Continuous Strike Days of Kathmandu Valley: A Case Study, Journal of the Institute of Engineering, 8, 105–113, 2012.
Shrestha, A. B., Wake, C. P., Dibb, J. E., Mayewski, P. A., Whitlow, S. I., Carmichael, G. R., and Ferm, M.: Seasonal variations in aerosol concentrations and compositions in the Nepal Himalaya, Atmos. Environ., 34, 3349–3363, https://doi.org/10.1016/S1352-2310(99)00366-0, 2000.
Shrestha, R. K., Gallagher, M. W., and Connolly, P. J.: Diurnal and seasonal variations of meteorology and aerosol concentrations in the foothills of the nepal himalayas (Nagarkot: 1,900 m asl), Asia-Pacific Journal of Atmospheric Sciences, 52, 63–75, 2016.
Shrestha, S., Shrestha, S., Maharjan, S., and Regmi, R.: Boundary Layer Characteristics over Aindanda Low-Mountain Pass of Kathmandu Valley, Nepal, Journal of Institute of Science and Technology, 20, 22–30, 2015.
Singh, N., Solanki, R., Ojha, N., Janssen, R. H. H., Pozzer, A., and Dhaka, S. K.: Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations, Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016, 2016.
Steyn, D., Baldi, M., and Hoff, R.: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Ocean. Tech., 16, 953–959, 1999.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Press, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Sturges, H. A.: The choice of a class interval, J. Am. Stat. Assoc., 21, 65–66, 1926.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
Tiwari, S., Bisht, D. S., Srivastava, A. K., and Gustafsson, Ö.: Simultaneous measurements of black carbon and PM2.5, CO, and NOx variability at a locally polluted urban location in India, Nat. Hazards, 75, 813–829, https://doi.org/10.1007/s11069-014-1351-9, 2015.
Wagner, P.: Analyse von biogenem und anthropogenem Isopren und seiner Bedeutung als Ozonvorläufersubstanz in der Stadtatmosphäre, Ph.D. thesis, Hohenwarsleben, zugl. Duisburg, Essen, Univ., Diss., 2014.
Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, A., Pappalardo, G., Schäfer, K., and Thomas, W.: What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET, Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, 2014.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Short summary
Ceilometer measurements taken in the Kathmandu Valley, Nepal, were used to study the temporal and spatial evolution of the mixing layer height in the valley. This provides important information on the vertical structure of the atmosphere and can thus also help to understand the mixing of air pollutants (e.g. black carbon) in the valley. The seasonal and diurnal cycles of the mixing layer were found to be highly dependent on meteorology and mainly anticorrelated to black carbon concentrations.
Ceilometer measurements taken in the Kathmandu Valley, Nepal, were used to study the temporal...
Altmetrics
Final-revised paper
Preprint