Articles | Volume 13, issue 11
Atmos. Chem. Phys., 13, 5473–5488, 2013

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 13, 5473–5488, 2013

Research article 04 Jun 2013

Research article | 04 Jun 2013

Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics

S. M. Burrows1,*, P. J. Rayner2, T. Butler1,**, and M. G. Lawrence1,** S. M. Burrows et al.
  • 1Max Planck Institute for Chemistry, Mainz, Germany
  • 2University of Melbourne, School of Earth Sciences, Melbourne, Australia
  • *now at: Pacific Northwest National Laboratory, Richland, Washington, USA
  • **now at: Institute for Advanced Sustainability Studies e.V., Potsdam, Germany

Abstract. Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC).

Source estimation via Markov Chain Monte Carlo is applied to a suite of sensitivity simulations, and the global mean emissions are estimated for the example problem of bacteria-containing aerosol particles. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN), the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error.

For this example, uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5–95th percentile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10–20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81–870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

Final-revised paper