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Abstract. Model-simulated transport of atmospheric trace
components can be combined with observed concentrations
to obtain estimates of ground-based sources using various
inversion techniques. These approaches have been applied
in the past primarily to obtain source estimates for long-
lived trace gases such as CO2. We consider the application
of similar techniques to source estimation for atmospheric
aerosols, using as a case study the estimation of bacteria
emissions from different ecosystem regions in the global at-
mospheric chemistry and climate model ECHAM5/MESSy-
Atmospheric Chemistry (EMAC).

Source estimation via Markov Chain Monte Carlo is ap-
plied to a suite of sensitivity simulations, and the global mean
emissions are estimated for the example problem of bacteria-
containing aerosol particles. We present an analysis of the
uncertainties in the global mean emissions, and a partition-
ing of the uncertainties that are attributable to particle size,
activity as cloud condensation nuclei (CCN), the ice nucle-
ation scavenging ratios for mixed-phase and cold clouds, and
measurement error.

For this example, uncertainty due to CCN activity or to
a 1 µm error in particle size is typically between 10 % and
40 % of the uncertainty due to observation uncertainty, as
measured by the 5–95th percentile range of the Monte Carlo
ensemble. Uncertainty attributable to the ice nucleation scav-
enging ratio in mixed-phase clouds is as high as 10–20 % of
that attributable to observation uncertainty. Taken together,
the four model parameters examined contribute about half as
much to the uncertainty in the estimated emissions as do the
observations. This was a surprisingly large contribution from

model uncertainty in light of the substantial observation un-
certainty, which ranges from 81–870 % of the mean for each
of ten ecosystems for this case study. The effects of these
and other model parameters in contributing to the uncertain-
ties in the transport of atmospheric aerosol particles should
be treated explicitly and systematically in both forward and
inverse modelling studies.

1 Introduction

Atmospheric aerosol particles are recognized as a critical part
of the climate system, with their direct and indirect effects on
climate identified as one of the key uncertainties in current
understanding of climate change (Solomon et al., 2007). In
order to advance prediction of aerosol climate impacts, their
representation in global models must be improved, includ-
ing their composition and distribution in the atmosphere. In
particular, while much current research focuses on charac-
terizing anthropogenic aerosols, naturally occurring aerosols
are still poorly characterized in global models due to a va-
riety of issues including sparsity of observational data, low
model resolution, and inherent uncertainties in model pa-
rameterizations (Kinne et al., 2006; Huneeus et al., 2011).
While global models typically account for several classes of
naturally occurring aerosol (sea spray, dust) and man-made
aerosol (sulfate, soot from industry and biomass burning),
almost no global atmospheric model currently includes any
explicit representation of primary biological aerosol particles
(PBAP) – material such as bacteria, pollen, fungal spores,
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5474 S. M. Burrows et al.: Impact of particle characteristics on inferred emissions

and leaf fragments – despite the fact that these particles make
up a large fraction of the observed aerosol at many locations
(Jaenicke, 2005). For example, observations of particles with
radius greater than 0.2 µm between 2000 and 2008 in Mainz,
Germany, found that between 5 and 50 % of particle vol-
ume was composed of primary biological aerosol particles; at
Lake Baikal, Russia, an average of ca. 20 % of particles was
observed to be PBAP (by number and volume; particles with
radius> 0.2 µm) (Jaenicke et al., 2007). Measurements in the
Amazon rainforest found that 40 % of submicron and up to
80 % of supermicron particles were primary biological parti-
cles (Graham et al., 2003). Although the biological fraction
reported depends on the definition and on the measurement
technique used, on which there has been little consensus (De-
spŕes et al., 2012), it is clear that biological particles can be
important contributors to the atmospheric aerosol population,
particularly in the supermicron size range.

Two broad groups of efforts to quantify emissions can be
distinguished: forward modelling and inverse modelling ap-
proaches. Briefly, forward modelling approaches use empir-
ical emissions data, derived e.g. from field experiments or
industry data, and use ancillary information (e.g. maps, cli-
mate variables) to upscale to a global emissions map (Rayner
et al., 2010; Jung et al., 2011). In contrast, inverse modelling
approaches use observed concentrations in conjunction with
a model of atmospheric transport to estimate emissions (Ent-
ing, 2000, 2002; Tarantola, 2005). This is achieved by ap-
plying mathematical techniques to infer the necessary emis-
sions required for the model to optimally match observations,
accounting for estimates of the uncertainties in observations
and for prior information about the emission. Inverse prob-
lems typically are underconstrained, so their solution often
requires the use of known emissions as prior information in
order to obtain a stable solution. In addition, the observed
variables typically differ from the modelled variables, e.g. in
their spatial and temporal distribution and representativeness
(Kaminski et al., 2001).

An inherent challenge of inverse modelling is the appro-
priate estimation of uncertainties, which can arise from many
sources, including errors in the observational data, differ-
ences between model and observations in sampling location
and representativeness, forecasting errors, and errors in mod-
elling (Enting, 2002). This study considers some of the un-
certainties inherent in the estimation of aerosol emissions
by inversion. In particular, we examine the uncertainty con-
tributed by the following model parameters: particle size, ac-
tivity as cloud condensation nuclei (CCN), and the ice nu-
cleation scavenging ratio. The uncertainty arising from these
model parameters is compared to uncertainties arising from
observations.

In this study, we use the estimation of bacteria emissions
from different ecosystems as a case study. In Sect.2, we
briefly describe the observational data and the emissions
model. In Sect.3, we describe the transport model, including
a discussion of key processes affecting aerosol removal and

the impact of selected model parameters on aerosol residence
time. In Sect.4, we briefly present the method used for inver-
sion of atmospheric transport and estimation of sources, and
present the main results from this inversion for different sen-
sitivity cases. These results show how the estimated global
mean emissions respond to changes in key model parameters.
In Sect.4.4, we introduce the term “normalized model uncer-
tainties” and present the normalized model uncertainties for
a set of model parameters affecting atmospheric transport.
We discuss our findings further in Sect.6. In Sect.7 we sum-
marize and discuss key findings.

2 Bacteria observations

Published observations of bacteria concentrations in the at-
mosphere are scarce, and many suffer from methodological
limitations. The concentrations of bacteria-containing parti-
cles in the atmosphere can be measured by a variety of meth-
ods with varying degrees of accuracy (Burrows et al., 2009b).
Most commonly, atmospheric particulates are collected onto
either a filter or an impaction plate, which is then analysed
for microbial content. One common method of analysis is the
cultivation of bacterial cells on a culture medium, followed
by counting of colonies. Because many bacteria are not read-
ily cultivated, this method results in serious undercounting
and a large uncertainty. A more robust, but also more labour-
intensive method, is the use of microscopy: for instance, op-
tical microscopy combined with protein staining or the use of
autofluorescence to identify microorganisms.Burrows et al.
(2009b) reviewed a large number of published measurements
of bacteria concentrations and recommended low, best, and
high estimates of the mean boundary-layer number concen-
trations of bacteria-containing particles in each of ten ecosys-
tems, which are reproduced here in Table1.

The high uncertainty in these estimates arises from un-
certainties inherent in the observational methods discussed
above, from the scarcity of observations, particularly long-
term observations, and also from the high spatial and tempo-
ral variability in concentrations. The estimated uncertainty in
the best-estimate mean concentrations derived from a review
of the literature ranges from 81–870 % of the mean for the
ten individual ecosystems (Burrows et al., 2009a). Contrast
this with an atmospheric component that can be measured
far more precisely, such as CO2, which due to its long atmo-
spheric residence time has a much smaller degree of spatial
and temporal variability, and the concentration of which can
be measured with a high degree of precision, the relative un-
certainty in each measurement being far less than 1 %.
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Table 1.Estimates of total mean number concentration of bacteria-containing particles [m−3] in near-surface air of various ecosystem types,
reproduced with corrections fromBurrows et al.(2009b,a).

Ecosystem Low estimateb Best estimatea High estimate Percent uncertainty

coastalc 2.3× 104 7.6× 104 1.3× 105 300
cropsc 4.1× 104 1.1× 105 1.7× 105 81
desertsd,e 1.6× 102 (1× 104) 3.8× 104 380
forestsf 3.3× 104 5.6× 104 8.8× 104 100
grasslandsc,g 2.5× 104 1.1× 105 8.4× 105 290
land iceh,i (1× 101) (5× 103) 1× 104 200
seasc,g,j 1× 101 1× 104 8× 104 800
shrubsf,g 1.2× 104 3.5× 105 8.4× 105 240
tundrag,k (1× 101) 1.2× 104 5.6× 104 470
wetlandsl 2× 104 9× 104 8× 105 870

a Additional values have been assumed for fields left blank by Burrows et al. (2009a); these are denoted by parentheses
and italic font.
b Percent uncertainties are calculated as best= (high–low)×100.
c Harrison et al. (2005).
d Lighthart and Shaffer (1994).
e Assumed the same as best estimate for seas.
f Shaffer and Lighthart (1997)
g Tong and Lighthart (1999); Tilley et al. (2001).
h Bauer et al. (2002).
i Estimated low value for seas taken as lower bound; average of high and low values taken as best estimate.
j Griffin et al. (2006).
k Estimated low value for seas taken as lower bound.
l Assumed to be within bounds of estimates in coastal and grassland/crops regions.

3 Global atmospheric model description, key processes,
and impacts of selected parameters

3.1 Model description

FollowingBurrows et al.(2009a), bacteria tracers are emitted
homogeneously from the ten ecosystems classes presented in
Table1. The ecosystem classification is based on the Olson
World Ecosystems data set (Olson, 1992), with ecosystems
lumped into broader classes as described inBurrows et al.
(2009a).

All model simulations were conducted using a mod-
ified version of the global chemistry-climate model
ECHAM5/MESSy-Atmospheric Chemistry (EMAC), ver-
sion 1.9. EMAC consists of a climate model that simulates
the underlying meteorological parameters such as winds,
combined with a number of submodels representing vari-
ous physical and chemical processes in the atmosphere. The
processes related to particulate emissions and loss processes
are encapsulated in the submodelsONLEM(online emissions,
Kerkweg et al., 2006b), DRYDEP(dry deposition onto land,
water and plant surfaces,Kerkweg et al., 2006a), SEDI (sed-
imentation,Kerkweg et al., 2006a), andSCAV(precipitation
scavenging,Tost et al., 2006a). The submodelCVTRANScal-
culates particulate transport analogously to gas-phase trans-
port as a sum of large-scale advection and parameterized
small-scale convective transport (Lawrence and Rasch, 2005;
Tost et al., 2010).

Modifications to the model comprised updates to the
SCAV submodel as described inTost et al. (2010). All
simulations were conducted at T63 horizontal resolution
(1.9◦

× 1.9◦ or about 140× 210 km at midlatitudes) with
31 vertical levels up to 10 hPa, for 5 simulated years (plus
an additional year of spin-up). Initial meteorological fields
were derived from the ECMWF ERA-15 reanalysis for
1 January 1990, following which meteorology was simu-
lated online. Monthly prescribed sea surface temperatures
were applied from the AMIP-II data set (available from
http://www-pcmdi.llnl.gov/).

EMAC simulates a realistic climate similar to that pro-
duced by other global chemistry-climate models (Lamarque
et al., 2013), and the climate is similar in free-running sim-
ulations and simulations nudged with meteorological data
(Klinger, 2011). The EMAC model, in a configuration sim-
ilar to the one used here, has been shown to produce sat-
isfactory simulations of the observed deposition patterns of
radioactive particles following the Chernobyl nuclear melt-
down (Lelieveld et al., 2012). Other model versions and con-
figurations of the EMAC model (e.g. including simulation of
aerosol microphysics) have been shown to be capable of pro-
ducing satisfactory simulations of the atmospheric dust life
cycle (Astitha et al., 2012; Gläser et al., 2012), of dust and
black carbon simultaneously (Aquila et al., 2011) and of mul-
tiple interacting natural and anthropogenic aerosol species
(Pringle et al., 2010). The ability of the model to predict
aerosol optical depth has been evaluated in detail for the
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Mediterranean region (de Meij et al., 2012) and globally
(Pozzer et al., 2012).

We assume that to a first approximation, bacteria-
containing aerosol particles are transported similarly to other
insoluble aerosol particles such as dust – i.e. they have the
same size-dependent rate of removal in the model as other
particles.

3.2 Simulations and sensitivity studies

Simulations were performed for monodisperse passive
aerosol tracers, with aerodynamic diameters between 1 µm
and 10 µm, and CCN-ACTIVE vs CCN-INACTIVE parti-
cles. In all cases, particles are removed by sedimentation,
dry deposition, impaction and interception scavenging, up-
take into cloud droplets by diffusion during droplet growth,
and ice-phase scavenging during ice nucleation and precipi-
tation. CCN-ACTIVE particles are additionally removed by
cloud droplet nucleation on the particles and subsequent pre-
cipitation. In the model setup used, cloud formation is in-
dependent of simulated aerosol concentrations – i.e. clouds
affect aerosols (via wet removal), but aerosols do not affect
clouds. The derived sensitivities thus refer only to the linear,
one-directional effect of loss processes on concentrations,
not to any potential nonlinear aerosol–cloud feedbacks.

We consider the base case (unmodified model) and four ice
scavenging sensitivity cases described in Table2, ten particle
sizes in 1 µm increments from 1 to 10 µm, and CCN-ACTIVE
vs CCN-INACTIVE particles.

In the cases SENSCOLD and SENSMIXED, small per-
turbations were made to test the quasi-linear response of the
model to a 1 % change in the respective ice scavenging pa-
rameter. The SENSMIXED case resulted in an apprecia-
ble perturbation of aerosol concentrations in the midlatitude
tropopause region and the surface atmosphere at high lati-
tudes (not shown). However, the effect on estimated emis-
sions was too small to be detected within the random noise
of the Monte Carlo simulation. These cases will not be dis-
cussed in further detail, but are included in some of the pre-
sented results.

In the cases LIMCOLD and LIM MIXED, we use larger
perturbations in order to gauge the response of the Monte
Carlo emissions estimate to a larger perturbation to the re-
spective ice scavenging coefficients, respectively changing
the coefficient for cold clouds from 0.05 to 0.1 and the co-
efficient for warm clouds from 0.1 to 0.7.

For each combination of values of these parameters, we
derive a separate inter-ecosystem transport matrixG, for a to-
tal of 100 different cases (10 sizes× 2 CCN activities× 5
IN sensitivity cases). For each case, we performed a full at-
mospheric model simulation to generate a realization ofG.
For each realization ofG, we performed a Markov Chain
Monte Carlo (MCMC) inversion with one million trial so-
lutions, where each trial solution was either accepted or re-
jected as a member of the posterior ensemble according to

Table 2. Ice nucleation scavenging ratio in the base case and four
sensitivity cases.

T > −35◦ C T ≤ −35◦ C

BASE 0.1 0.05
SENSCOLD 0.1 0.0505
SENSMIXED 0.101 0.05
LIM COLD 0.1 0.1
LIM MIXED 0.7 0.05

the Metropolis rule (Sect.4.3). The lowest acceptance rate
was ca. 15 %, producing an ensemble with more than one
hundred fifty thousand members.

Ice nucleation scavenging in EMAC is calculated using
a constant scavenging ratio. The ice and liquid water con-
tents of clouds are each represented in EMAC by a single
bulk variable. In the unmodified model (base case), ice nu-
cleation is treated as follows: for mixed-phase clouds warmer
than−35◦C, the ice nucleation scavenging ratio is set to 0.1;
otherwise it is set to 0.05. This ratio describes the fraction
of the aerosol particles within the cloud that are incorporated
into cloud ice crystals. The removal of these particles from
a model grid box (by scavenging) further depends on the rate
at which frozen precipitation falls from the grid box, relative
to the amount of cloud ice within the grid box.

This parameterization is broadly consistent with field stud-
ies of aerosol partitioning in clouds at the Jungfraujoch
(Swiss Alps;Henning et al., 2004; Verheggen et al., 2007),
which show that the fraction of aerosol particles that are
incorporated into the cloud liquid water and cloud ice de-
creases very rapidly at low temperatures and high ice mass
fractions. This is likely due primarily to the Bergeron–
Findeisen effect, which leads to the growth of a small num-
ber of ice crystals at the expense of the evaporation of
a larger number of cloud droplets, which upon evaporation
release the particles they contained back into the aerosol
phase (Schwarzenb̈ock et al., 2001). In those studies, the ac-
tivated fraction ranges from 0.05 or less at temperatures be-
low −15◦C to about 0.7 at near-zero temperatures (Henning
et al., 2004; Verheggen et al., 2007). The activated aerosol
represents an upper limit on the aerosol that may be removed
due to nucleation scavenging.

3.3 Aerosol loss processes and their dependence on
particle characteristics

Aerosols are removed from the atmosphere by both dry and
wet deposition processes. For small particles, the most effi-
cient removal is by coagulation with hydrometeors and dry
surfaces associated with Brownian diffusion. For large par-
ticles, gravitational settling becomes increasingly efficient,
and particles are more likely to be collected by hydrom-
eteors via inertial impaction and interception, and subse-
quently removed via precipitation. For aerosol particles with

Atmos. Chem. Phys., 13, 5473–5488, 2013 www.atmos-chem-phys.net/13/5473/2013/
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aerodynamic diameters close to 1 µm, precipitation scaveng-
ing is the dominant atmospheric loss process, but particles
of this size fall into the so-called “scavenging gap” and thus
have comparatively long atmospheric residence times (Prup-
pacher and Klett, 1997).

Particle size influences the rate of dry removal, and both
particle size and chemical composition influence the rate of
wet removal. In particular, particle chemical composition in-
fluences the likelihood that particles will act as CCN and
as heterogeneous nuclei for the formation of ice crystals,
and thus it influences the likelihood of scavenging in mixed-
phase clouds. However, the effect of IN activity on aerosol
lifetime is presently not accounted for in EMAC or most
other global atmospheric models. Thus, uncertainties related
to particle characteristics also impact transport and loss pro-
cesses (Pruppacher and Klett, 1997; Seinfeld and Pandis,
2006).

4 Source inversion and error analysis

4.1 Statistical model

The forward model is described by the following elements:

1. The observable quantitiesd: a vector representing the
mean concentration of bacteria in each ecosystem.

2. The model (parameters)m: a vector representing the
surface fluxes in each ecosystem.

3. The model functionm 7→ g(m): The results from global
atmospheric model simulations (as described in Sect.3)
are used to derive a simplified statistical model of inter-
ecosystem transport. The modelled concentrations are
linear in source strengths so the model can be repre-
sented by a 10× 10 matrix describing the relationship
between homogeneous, constant emissions from each
source ecosystem and mean boundary-layer concen-
trations in each destination ecosystem. The simulated
concentrations are given by the product of the inter-
ecosystem transfer matrixG and the flux vectorm:

g(m) = Gm. (1)

The linearity ofg is guaranteed by design in the EMAC
model setup used here (neglecting small numerical er-
rors) as all simulated removal rates are proportional
to aerosol mixing ratios, and there is no feedback of
aerosol concentrations onto other model variables such
as cloud microphysics or meteorological variables.

4. The prior probability densityρ(d,m) represents prior
information constraining both the observable quantities
and the model parameters.

If the data (observations of concentrations) are indepen-
dent of the prior information about model parameters,
we can write

ρ(d,m) = ρD(d)ρM(m), (2)

whereρD(d) represents prior information about the ob-
servable quantities andρM(m) represents prior informa-
tion about the model.

Here we assume that no information is available about
the values of the observable parameters prior to the in-
version – i.e. the measurements are the only source of
information about the observable parameters:

ρD(d) = µD(d). (3)

5. The conditional probabilityθ(d|m) is the probability
that the result of the model (the simulated data vector
Gm) is correct, given the data.

In this study, we assume that the observations are in-
dependent and their uncertainty is Gaussian-distributed.
The discretized formulation ofθ(d|m) is then equal to
the product of the normalized Gaussian probability den-
sity functions for each data point:

θ(d|m) =

N∏
i=1

1√
2πs2

D,i

exp
−(gi(m) − d i

obs)
2

2s2
D,i

, (4)

whered i
obs is the observed value of thei-th component

of d, sD,i is the standard deviation of thei-th observa-
tion (measurement uncertainty), andgi(m) is the i-th
component ofg(m),

gi(m) =

M∑
j=1

Gijmj . (5)

4.1.1 Observable parameters

For the observations we assume Gaussian uncertainty, with
coefficients taken from Table1. The mean value is given
by the best estimate. We estimate the standard deviation fol-
lowing the “range rule”, by which the standard deviation is
approximately one-quarter of the range of observed values,
which we calculate as(high estimate− low estimate)/4. We
assume no prior information about the value ofd.

4.1.2 Model prior and model error

For the prior information about the model we treat two cases.
In the case NO-PRIOR,

ρM(m) = µM(m), (6)

while in the case PRIOR-POS,

ρM(m) =

{
µM(m), m ≥ 0

0, m < 0
. (7)

www.atmos-chem-phys.net/13/5473/2013/ Atmos. Chem. Phys., 13, 5473–5488, 2013
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We tested the effects of a prior positivity constraint on the
model, i.e. a constraint that disallows negative emissions. In-
versions with this constraint are designated PRIOR-POS, and
the model priorρM(m) is given by

ρM(m) =

{
µM(m), m ≥ 0

0, m < 0
, (8)

whereµM(m) represents the homogeneous probability distri-
bution form (Tarantola, 2005, Ch. 1). A positivity constraint
can be justified by assuming that the atmospheric model ac-
curately represents the removal of aerosols from the atmo-
sphere, or at least does not underestimate removal. However,
this constraint may not be justified if the atmospheric model
underestimates removal. For this reason, and to illustrate the
effect of the prior positivity constraint, we also present some
results from inversions for which no prior constraint is ap-
plied, designated NO-PRIOR. Our reasoning for introducing
the prior constraint is discussed further in Sect.5.2.

For the purposes of the inversion, we do not explicitly in-
clude the model error. The Eq. (1.74) of Eq. (1.74) ofTaran-
tola (2005) shows that that, for Gaussian error statistics, one
can add the variances associated with model error and obser-
vational error. Given the very large observational errors we
treat the model error as negligible (for each realization of the
model).

4.2 Solution of the inverse problem

The solution of the inverse problem, the posterior probability
distribution,σM(d,m), is given by

σM(d,m) = kρM(m)L(m), (9)

wherek is a normalization constant andρM(m) is the prior
probability density in the model space. The likelihood func-
tion L(m) is a measure of how well a candidate modelm

explains the observations:

L(m) =

∫
D

[
ρD(d)θ(d|m)

µD(d)

]
dd, (10)

where
∫
D is the integral over the data spaceD.

Using Eqs. (3) and (4), we can directly calculate the like-
lihood function:

L(m) =

∫
D

[θ(d|m)] dd

=

N∏
i=1

1√
2πs2

D,i

exp
−(gi(m) − d i

obs)
2

2s2
D,i

, (11)

wheregi(m) is thei-th component ofg(m), d i
obs is the ob-

served value of thei-th component ofd, andsD,i is the stan-
dard deviation of thei-th observation (measurement uncer-
tainty).

4.3 The Metropolis algorithm

To solve the inversion problem, we apply a Markov Chain
Monte Carlo algorithm (Metropolis et al., 1953), generating
a large ensemble of solutions via a random walk algorithm,
and applying a probabilistic rule to preferentially select solu-
tions that have a higher likelihood.

1. Select initial guess for model parametersm0.

2. Add a small random vectorε to select next candidate
solution,

mi+1 = mi + ε. (12)

3. Obtain a sample of the prior distribution: apply the
Metropolis rule to determine whether to accept or re-
ject the candidate solution based on the prior probability
densityρM(m):

a. If ρmi+1 ≥ ρmi
, accept the proposed transition to

mi+1.

b. If ρmi+1 < ρmi
, then accept the proposed move with

probability

Pi→i+1 =
ρmi+1

ρmi

. (13)

For PRIOR-POS, all candidate solutionsmi in which all
elements (individual model fluxes) are non-negative are
retained, while all candidates with negative elements are
rejected (Eq.7). The retainedmi are a sample of the the
prior ensemble.

4. For each member of the prior ensemble, calculate the
likelihood function and apply the Metropolis rule to de-
termine whether to accept or reject the candidate solu-
tion:

a. If L(mi+1) ≥ L(mi), accept the proposed transi-
tion tomi+1.

b. If L(mi+1) < L(mi), then accept the proposed
move with probability

Pi→j =
L(mi+1)

L(mi)
. (14)

5. Repeat steps (2)–(4) for the desired number of trials.

Note that because only the ratios of the likelihoods associ-
ated with each model are of interest, there is no need to know
the normalization parameterk, which remains constant.

Given a sufficiently large number of iterations, the ensem-
ble of mi is a sample of the posterior probability distribu-
tion σ(d,m), i.e. the solution to the inverse problem (Eq.9;
Metropolis et al., 1953; Mosegaard and Tarantola, 1995). The
centre and spread of the ensemble can be used as summary
statistics of the posterior PDF.

Atmos. Chem. Phys., 13, 5473–5488, 2013 www.atmos-chem-phys.net/13/5473/2013/
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Table 3. Uncertainty ranges used for calculation of model uncer-
tainty, observation uncertainty, and normalized model uncertainty.

Source of uncertainty Uncertainty range

Observations 5–95th percentile of ensemble
Particle diameter ±1 µm
CCN activity never CCN – always CCN
Mixed-phase ice scavenging 0.1–0.7
Cold ice scavenging 0.0–0.1

The MCMC method provides great flexibility at the cost of
computational expense. For the current problem, the forward
model is small and cheap (multiplication of a vector with
a 10× 10 matrix), so the computational expense required to
produce and analyse a large Monte Carlo ensemble is accept-
able. While a full EMAC model run in the setup used for this
study requires approximately 70 CPU hours of computation,
the matrix multiplication can be performed one million times
in less than 0.01 s of CPU time.

The ensemble generated is interpreted as an estimate of
σ(m). The centre of the ensemble is interpreted as an esti-
mate ofm, and the spread of the ensemble as an estimate of
the uncertainty inm. As a measure of the centre, we use the
mode (from the half-range mode estimator ofBickel, 2002)
as testing revealed that the mode gave a more robust indica-
tion of the location of the ensemble peak than the median or
mean, particularly in the PRIOR-POS simulations (compare
Fig. 2). As a measure of the ensemble spread, we use the
5–95th percentile range.

4.4 Definition of normalized model uncertainty

Comparing the uncertainties in the inversion that arise from
the observation uncertainty with those that arise from model
parameters (particle size, ice scavenging parameters, and
CCN activity) can aid in developing an understanding of the
relative utility of investing research efforts in various aspects
of model development or in further observations.

For continuous parameters (particle size and ice nucleation
scavenging ratio), we define the “linear model uncertainty”
as the shift in the centre of the posterior distribution resulting
from a small change in the value of the parameter:

Linear model uncertainty=

Parameter uncertainty×

Difference in centre of posterior distribution

Difference in parameter
(15)

For discontinuous parameters (CCN-ACTIVE vs CCN-
INACTIVE), we define the associated “model uncertainty”
as the shift in the centre of the posterior distribution resulting
from using different values of the parameter:

Model uncertainty=

Difference in centre of posterior distribution. (16)

To directly compare the uncertainty from model param-
eters with the uncertainty from observations, we define the
“normalized model uncertainty” as the contribution of model
uncertainty to the uncertainty in the posterior distribution,
normalized relative to the observation uncertainty – i.e.

Normalized model uncertainty=

(Linear) model uncertainty

Mean spread in posterior distribution
. (17)

The values used for the parameter uncertainty in Eq. (15)
and the observation uncertainty are summarized in Table3.
We define the observation uncertainty as the spread in the
posterior distribution, given by the middle 90 % range. The
denominator in Eq. (17) is the average of the spreads in
the two sensitivity cases. The model parameter uncertain-
ties were chosen to approximately span the range of possi-
ble values. Limited observations of the size range of bac-
teria containing particles indicate that they are in the size
range of about 1–5 µm, with smaller particles observed at a
coastal site (count median diameter 2.4 µm and 95 % confi-
dence interval 3.1–1.6 µm) and larger particles observed at
inland sites (count median diameters near 4 µm and 95 %
confidence intervals ranging from 3.2 to 5.0 µm) (e.g.Shaf-
fer and Lighthart, 1997; see alsoTong and Lighthart, 2000;
Wang et al., 2007). We therefore consider an uncertainty
range of±1 µm to represent the approximate range of size
uncertainty per source. Because it is unclear to what extent
bacteria are CCN active in the atmosphere, we consider the
limiting cases: particles that are completely inactive and par-
ticles that are always active as CCN. The ice scavenging pa-
rameters span the ranges of values observed for cold and
mixed-phase clouds (Sect.3.2, Henning et al., 2004).

The normalized model uncertainty allows us to summa-
rize the uncertainties resulting from different model parame-
ters and place them on a single, dimensionless scale. A nor-
malized uncertainty near unity means that the contributions
of the uncertainty in the model parameter and of the uncer-
tainty in the observations are roughly equivalent. A normal-
ized uncertainty much less than unity implies that the model
uncertainty for this parameter is much smaller than the ob-
servation uncertainty, while a normalized uncertainty much
greater than unity implies that the model uncertainty is much
greater than the observation uncertainty for this parameter.

To calculate the normalized CCN uncertainty, we calculate
the difference between the centres of the posterior distribu-
tions for each pair of CCN-ACTIVE and CCN-INACTIVE
cases where all other factors are held constant (Eq.16).

To calculate the normalized size uncertainty, we calculate
the difference between the centres of each neighbouring pair
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Fig. 1. Global mean residence times of 1 µm particles in the BASE model setup as function of aerodynamic diameter, emission ecosystem,
and CCN activity. Left panel: CCN-ACTIVE. Middle: CCN-INACTIVE. Right: ratio of CCN-INACTIVE to CCN-ACTIVE residence times.
Points indicate the locations of the simulations performed. The color key is indicated in the left panel.

The uncertainty contribution from CCN activity is approx-
imately constant in absolute terms across the size range of
interest. This is expected because particle wet removal as pa-
rameterized in SCAV is effectively independent of particle
size in this size range.

The uncertainty contribution from CCN activity decreases
relative to particle size as particle size increases and median
global emissions increase. Because this decrease is compen-
sated by a growth in the relative uncertainty contribution
from particle size, the total relative uncertainty remains ap-
proximately constant, near 150% of the median global flux
estimate. The contributions from ice scavenging parameters
are comparatively small, although mixed-phase ice scaveng-
ing contributes more uncertainty than particle size for parti-
cle diameters from 1–4 µm.

5.5 Normalized model uncertainties

The normalized model uncertainties in the estimated global
mean emissions are compared in Fig. 7. On average, the nor-
malized model uncertainty from CCN activity is the largest.
The additional effect of changing ice nucleation scavenging
coefficients is minimal. The exception is the LIM MIXED
case, where normalized CCN uncertainty is reduced, at least
for smaller particle sizes (Fig. 8, top).

The normalized model uncertainty from particle size is
slightly smaller than that from CCN activity. However, if the
uncertainty in the particle size were appreciably larger than
the ±1 µm assumed here, then the particle size would be the
largest contributor to the uncertainty in source estimation. As
discussed in Sect. 4.4, the few measurements of the size of
bacteria-containing particles that are available suggest that
particles bearing culturable bacteria have diameters in the
range of about 1–5 µm, with ranges of ca. ±1 µm from the
median at each individual measurement location (e.g. Shaf-
fer and Lighthart, 1997; Lighthart, 2000; Tong and Lighthart,

2000; Wang et al., 2007), so the uncertainty range in particle
size could plausibly be considered to be as large as ±2 µm,
rather than the±1 µm used in this study. Doubling the uncer-
tainty in particle size would approximately double its contri-
bution to the model parameter uncertainty in the inversion.

Figure 7 shows that the normalized model uncertainty for
CCN activity is about 20 %–30 %. The normalized model un-
certainty can have a negative value; this indicates that the
median of the distribution has shifted in the opposite direc-
tion from the expected one, which can occur as the result of
randomness in the Monte Carlo method. In Fig. 8, we show
that the variability in this value is partly explained by the
variation of CCN uncertainty with particle size. For 10 µm
particles, the normalized model uncertainty for CCN activ-
ity is significantly smaller (close to 20 %) than for 1 µm par-
ticles (close to 40 %). This is attributable to the increasing
ensemble spread (observation uncertainty) at larger particle
sizes (Fig. 5), since the absolute magnitude of the CCN un-
certainty remains roughly constant with varying particle size
(Fig. 6).

Similarly, the normalized model uncertainty for particle
size varies as a function of particle size. Model sensitivity
to particle size is greater for larger particles and for CCN-
INACTIVE particles. This is also seen in Fig. 1, where the
steeper slopes of the lines indicates a higher sensitivity to
particle size for larger particles, and for CCN-ACTIVE par-
ticles.

The sensitivity to the CCN activity of the particles is high
for particles of 1 µm diameter, decreasing to only moderate
sensitivity for particles around 10 µm diameter (Fig. 8). The
sensitivity to particle size is small to moderate for particles
around 1 µm diameter, and increases to a large sensitivity
for particles around 10 µm diameter. The sensitivity to par-
ticle size is higher for CCN-INACTIVE particles than for
CCN-ACTIVE particles, particularly at particle sizes closer
to 1 µm (Fig. 8).

Fig. 1. Global mean residence times of 1 µm particles in the BASE model setup as function of aerodynamic diameter, emission ecosystem,
and CCN activity. Left panel: CCN-ACTIVE. Middle: CCN-INACTIVE. Right: ratio of CCN-INACTIVE to CCN-ACTIVE residence times.
Points indicate the locations of the simulations performed. The colour key is indicated in the left panel.

of particle sizes (i.e. 1 µm and 2 µm; 2 µm and 3 µm, and so
on), where all other factors are held constant (Eq.15).

To calculate the cold and mixed ice scavenging uncer-
tainties, we use the differences between the BASE case and
the LIM COLD and LIM MIXED cases, respectively, where
the ice nucleation scavenging coefficient is perturbed and all
other factors are held constant (Eq.15).

In each case, we then normalize the result by calculating
the spread in each of the pair of distributions and then calcu-
lating the mean value of these spreads (Eq.17).

5 Results and discussion

5.1 Impact of size and emission region on particle
residence times

The global mean atmospheric residence times of particles
depend strongly on whether they act as CCN, on the parti-
cle diameter, and on the region from which they are emitted
(Fig. 1). Atmospheric residence times are longest for parti-
cles emitted from deserts, where there is little scavenging
and dry convection rapidly transports particles to high alti-
tudes. Residence times of 1 µm particles are shortest for par-
ticles emitted from oceans, where scavenging is strongest.
For larger particles and CCN-INACTIVE particles, for which
particle lifetime is more strongly driven by dry deposition
processes, particle lifetimes are shortest in crops and for-
est regions, where plants increase friction and provide large
surfaces for deposition. The effect of particle size on resi-
dence time is somewhat stronger for CCN-INACTIVE par-
ticles than for CCN-ACTIVE particles since the residence
time for CCN-INACTIVE particles is more strongly deter-
mined by dry deposition.

5.2 Mean annual flux estimated per ecosystem

The posterior distributions of the estimated fluxes for each
particle size and source ecosystem are shown as histograms

in Fig. 2 and Fig.3. In each case, the typical posterior dis-
tribution of flux estimates for each ecosystem has an ap-
proximately Gaussian shape, which results from the assump-
tion that the observation uncertainty has a Gaussian distribu-
tion. The histograms appear most irregular in the wetlands
region, which is also the most poorly constrained by obser-
vations (Table1).

As particle size increases, not only do estimated emis-
sions increase but also estimated emissions for individual
ecosystems typically increase as well. This can be seen in
the histograms of the ecosystem emission estimates, espe-
cially when the emissions in each ecosystem are constrained
to be positive (Fig.2). When emissions are not constrained
to be positive, this pattern is less clear (Fig.3), especially for
wetlands and coastal regions. These regions are poorly con-
strained by the observations due to their relatively small con-
tribution to simulated concentrations: even large changes in
the emissions in these regions have only a small influence on
the concentrations in other regions, or on global emissions.

In NO-PRIOR, negative fluxes are allowed, and in some
regions the most likely estimate of the flux is negative. Neg-
ative fluxes can occur for statistical or physical reasons. In
many atmospheric tracer inversions (e.g.Gurney et al., 2002)
the data are insufficient to constrain each emission individ-
ually. Posterior flux estimates are characterized by dipoles
where the combination is well constrained but fluxes from
individual regions can take on large values of opposite sign.
Physically, negative emissions imply a mis-specification of
deposition processes: the model cannot, with the deposition
rates assumed in the transport matrix, simulate the concen-
tration gradients observed between ecosystems.

In the NO-PRIOR case, flux estimates in different regions
are highly cross-correlated (Fig.4, left panel). These high
correlations suggest that the negative inferred emissions in
NO-PRIOR may be statistical and can be better explained by
the weakness of the observational constraints on the inver-
sion than by an underestimate of emissions.
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Fig. 2. Histograms of the Monte Carlo sample of flux estimates, for each ecosystem and particle sizes from 1 µm to 10 µm in 1 µm intervals.
Here for CCN-ACTIVE particles in PRIOR-POS, with Gaussian data uncertainty and a prior positivity constraint on fluxes.Fig. 2. Histograms of the Monte Carlo sample of flux estimates for each ecosystem and particle sizes from 1 µm to 10 µm in 1 µm intervals.

Here, for CCN-ACTIVE particles in PRIOR-POS, with Gaussian data uncertainty and a prior positivity constraint on fluxes.

For this reason, we introduced a positive prior constraint
on each inferred flux (PRIOR-POS). In PRIOR-POS, the typ-
ical posterior distribution has the shape of a truncated Gaus-
sian distribution (Fig.2). This is because negative fluxes are
disallowed, and the correlations between flux estimates in the
different regions become very small: the additional constraint
has the effect of somewhat decoupling the emissions from
different regions (Fig.4, right panel). We will focus on the
results of the better-constrained PRIOR-POS inversion in the
remainder of this paper.

5.3 Global annual mass emissions

Figure 5 shows the distribution of the global annual mass
emitted for the Markov Chain Monte Carlo (MCMC) ensem-
ble, for PRIOR-POS (with a positive constraint on the emis-
sions). Interesting features of the posterior ensembles include
the following:

1. The ensembles exhibit a right-skewed distribution, with
more high extreme values than low extreme values: this

results directly from the prior positive constraint on the
emissions.

2. Estimated emissions increase with increasing particle
size. Since the observed concentrations are defined in-
dependently of particle size, and since smaller particles
have longer residence times, lower emissions of small
particles are required to match the observed number
concentrations compared to large particles, which have
shorter residence times.

3. Higher emissions are estimated for CCN-ACTIVE par-
ticles than for CCN-INACTIVE particles; again, shorter
particle lifetimes require larger emissions to match the
observed concentrations.

5.4 Partitioning of uncertainty in total global emissions

In Fig. 6 we show the magnitude of the uncertainties arising
from each of the sources considered: observational uncer-
tainty, particle size, CCN activity, mixed-phase scavenging
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Fig. 3. Histograms of flux estimates, as in Fig. 2. Here for CCN-ACTIVE particles in NO-PRIOR, with Gaussian data uncertainty and no
prior constraint on fluxes. The vertical dashed lines indicate the position of zero estimated flux in each column.Fig. 3. Histograms of flux estimates, as in Fig.2. Here, for CCN-ACTIVE particles in NO-PRIOR, with Gaussian data uncertainty and no

prior constraint on fluxes. The vertical dashed lines indicate the position of zero estimated flux in each column.
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Fig. 4. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE, 1 µm particles. Left: NO-PRIOR inversion
(with no prior constraint on fluxes). Right: PRIOR-POS inversion (with prior positivity constraint on fluxes). To aid visual interpretation,
positive correlations are shaded blue and negative correlations are shaded red, with darker hues corresponding to greater absolute values.

Fig. 5. Distributions of global annual mass emissions estimates [Gg per year] shown as histograms. Results are shown from left to right
for each particle diameter from 1 µm to 10 µm, and for CCN-INACTIVE (red, on left for each size) and CCN-ACTIVE (blue, on right)
particles. Lines demarcate the minimum, 10-%ile, 25-%ile, 50-%ile, 75-%ile, 90-%ile, and maximum of the total sample (CCN-ACTIVE
and CCN-INACTIVE particles combined) for each particle size. Results are for PRIOR-POS.

Fig. 4. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE, 1 µm particles. Left: NO-PRIOR inversion
(with no prior constraint on fluxes). Right: PRIOR-POS inversion (with prior positivity constraint on fluxes). To aid visual interpretation,
positive correlations are shaded blue and negative correlations are shaded red, with darker hues corresponding to greater absolute values.
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Fig. 4. Correlations between flux estimates for different ecosystems. Here for CCN-ACTIVE, 1 µm particles. Left: NO-PRIOR inversion
(with no prior constraint on fluxes). Right: PRIOR-POS inversion (with prior positivity constraint on fluxes). To aid visual interpretation,
positive correlations are shaded blue and negative correlations are shaded red, with darker hues corresponding to greater absolute values.

Fig. 5. Distributions of global annual mass emissions estimates [Gg per year] shown as histograms. Results are shown from left to right
for each particle diameter from 1 µm to 10 µm, and for CCN-INACTIVE (red, on left for each size) and CCN-ACTIVE (blue, on right)
particles. Lines demarcate the minimum, 10-%ile, 25-%ile, 50-%ile, 75-%ile, 90-%ile, and maximum of the total sample (CCN-ACTIVE
and CCN-INACTIVE particles combined) for each particle size. Results are for PRIOR-POS.

Fig. 5. Distributions of global annual mass emissions estimates [Gg per year] shown as histograms. Results are shown from left to right for
each particle diameter from 1 µm to 10 µm, and for CCN-INACTIVE (red, on left for each size) and CCN-ACTIVE (blue, on right) particles.
Lines demarcate the minimum, 10, 25, 50, 75, and 90th percentiles, and maximum of the total sample (CCN-ACTIVE and CCN-INACTIVE
particles combined) for each particle size. Results are for PRIOR-POS.

and cold ice scavenging. As with the emissions themselves,
uncertainties increase with particle size.

The uncertainty contribution from CCN activity is approx-
imately constant in absolute terms across the size range of
interest. This is expected because particle wet removal as pa-
rameterized inSCAVis effectively independent of particle
size in this size range.

The uncertainty contribution from CCN activity decreases
relative to particle size as particle size increases and median
global emissions increase. Because this decrease is compen-
sated by a growth in the relative uncertainty contribution
from particle size, the total relative uncertainty remains ap-
proximately constant, near 150 % of the median global flux
estimate. The contributions from ice scavenging parameters
are comparatively small, although mixed-phase ice scaveng-
ing contributes more uncertainty than particle size for parti-
cle diameters from 1–4 µm.

5.5 Normalized model uncertainties

The normalized model uncertainties in the estimated global
mean emissions are compared in Fig.7. On average, the nor-
malized model uncertainty from CCN activity is the largest.
The additional effect of changing ice nucleation scavenging
coefficients is minimal. The exception is the LIMMIXED
case, where normalized CCN uncertainty is reduced, at least
for smaller particle sizes (Fig.8, top).

The normalized model uncertainty from particle size is
slightly smaller than that from CCN activity. However, if the
uncertainty in the particle size were appreciably larger than
the±1 µm assumed here, then the particle size would be the
largest contributor to the uncertainty in source estimation. As

discussed in Sect.4.4, the few measurements of the size of
bacteria-containing particles that are available suggest that
particles bearing culturable bacteria have diameters in the
range of about 1–5 µm, with ranges of ca.±1 µm from the
median at each individual measurement location (e.g.Shaf-
fer and Lighthart, 1997; Lighthart, 2000; Tong and Lighthart,
2000; Wang et al., 2007), so the uncertainty range in particle
size could plausibly be considered to be as large as±2 µm,
rather than the±1 µm used in this study. Doubling the uncer-
tainty in particle size would approximately double its contri-
bution to the model parameter uncertainty in the inversion.

Figure7 shows that the normalized model uncertainty for
CCN activity is about 20–30 %. The normalized model un-
certainty can have a negative value; this indicates that the
median of the distribution has shifted in the opposite direc-
tion from the expected one, which can occur as the result of
randomness in the Monte Carlo method. In Fig.8, we show
that the variability in this value is partly explained by the
variation of CCN uncertainty with particle size. For 10 µm
particles, the normalized model uncertainty for CCN activity
is significantly smaller (close to 20 %) than for 1 µm particles
(close to 40 %). This is attributable to the increasing ensem-
ble spread (observation uncertainty) at larger particle sizes
(Fig.5) since the absolute magnitude of the CCN uncertainty
remains roughly constant with varying particle size (Fig.6).

Similarly, the normalized model uncertainty for particle
size varies as a function of particle size. Model sensitivity
to particle size is greater for larger particles and for CCN-
INACTIVE particles. This is also seen in Fig.1, where the
steeper slopes of the lines indicates a higher sensitivity to
particle size for larger particles and for CCN-ACTIVE parti-
cles.
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Fig. 6. Top: model and observation uncertainty in the inferred mean global flux (median per uncertainty type for various cases), expressed
as absolute uncertainty. Bottom: Same, expressed as a relative uncertainty, i.e. (absolute uncertainty in global flux estimate)/(median global
flux estimate) ·100. The sum of the individual uncertainties exceeds the value of the median global flux estimate in each case, resulting in
relative uncertainties that exceed 100 %. The color key is indicated in the left panel.

Fig. 7. Boxplot of the distributions of normalized model uncer-
tainties for particle size, CCN activity, and the LIM MIXED and
LIM COLD tests of the ice scavenging parameterization. Thick
central lines show the median; box extent shows the 25-%ile to 75-
%ile; whiskers extend up to 1.5 times the length of the box, or to the
most extreme point; and dots show outliers beyond the whiskers.

All effects shown in Fig. 8 and discussed above are sta-
tistically significant by the Student’s t-test (p < 0.01). Other
significant effects include: a reduction in the normalized un-
certainty from CCN activity in the LIM MIXED simulation
(after controlling for the effect of particle size; p < 0.01),
and an increase in the normalized uncertainty from particle
size as particle size increases (p < 0.01). Three of the statisti-
cally significant interactions between model parameters and
the normalized model uncertainties are illustrated in the lin-
ear effect diagrams shown in Fig. 9. Each diagram shows the
marginal effect of one of the three predictor variables (par-
ticle size, CCN activity and IN sensitivity case), while the
others are held constant (Fox, 1987, 2003).

6 Discussion

In this study, we have focused on the impact of model param-
eters describing particle characteristics that affect simulated
aerosol removal processes, within the context of a particu-
lar realization of a global chemistry-climate model. However,
tracer transport in global chemistry-climate models can also
be sensitive to many other aspects of the model that are be-
yond the scope of this study, such as model resolution, the
use of prescribed meteorology to nudge the chemistry cli-
mate model towards the observed atmospheric state (Aghedo
et al., 2010), numerical formulations of atmospheric dynam-
ics (Rasch et al., 2006), and the formulation of the parameter-
ization of deep convective transport (Mahowald et al., 1995;
Luo et al., 2003; Tost et al., 2006b; Lawrence and Salzmann,
2008). The sensitivity of modeled transport to particle char-
acteristics as simulated here could potentially change if these
or other aspects of the model were changed. We did not con-

Fig. 6.Top: model and observation uncertainty in the inferred mean global flux (median per uncertainty type for various cases), expressed as
absolute uncertainty. Bottom: same, expressed as a relative uncertainty, i.e. (absolute uncertainty in global flux estimate)/(median global flux
estimate)·100. The sum of the individual uncertainties exceeds the value of the median global flux estimate in each case, resulting in relative
uncertainties that exceed 100 %. The colour key is indicated in the left panel.
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flux estimate) ·100. The sum of the individual uncertainties exceeds the value of the median global flux estimate in each case, resulting in
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(after controlling for the effect of particle size; p < 0.01),
and an increase in the normalized uncertainty from particle
size as particle size increases (p < 0.01). Three of the statisti-
cally significant interactions between model parameters and
the normalized model uncertainties are illustrated in the lin-
ear effect diagrams shown in Fig. 9. Each diagram shows the
marginal effect of one of the three predictor variables (par-
ticle size, CCN activity and IN sensitivity case), while the
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tracer transport in global chemistry-climate models can also
be sensitive to many other aspects of the model that are be-
yond the scope of this study, such as model resolution, the
use of prescribed meteorology to nudge the chemistry cli-
mate model towards the observed atmospheric state (Aghedo
et al., 2010), numerical formulations of atmospheric dynam-
ics (Rasch et al., 2006), and the formulation of the parameter-
ization of deep convective transport (Mahowald et al., 1995;
Luo et al., 2003; Tost et al., 2006b; Lawrence and Salzmann,
2008). The sensitivity of modeled transport to particle char-
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or other aspects of the model were changed. We did not con-

Fig. 7. Boxplot of the distributions of normalized model uncer-
tainties for particle size, CCN activity, and the LIMMIXED and
LIM COLD tests of the ice scavenging parameterization. Thick
central lines show the median; box extent shows the 25–75th per-
centile; whiskers extend up to 1.5 times the length of the box, or to
the most extreme point; dots show outliers beyond the whiskers.

The sensitivity to the CCN activity of the particles is high
for particles of 1 µm diameter, decreasing to only moderate
sensitivity for particles around 10 µm diameter (Fig.8). The
sensitivity to particle size is small to moderate for particles
around 1 µm diameter, but increases to a large sensitivity for
particles around 10 µm diameter. The sensitivity to particle
size is higher for CCN-INACTIVE particles than for CCN-
ACTIVE particles, particularly at particle sizes closer to 1 µm
(Fig. 8).

All effects shown in Fig.8 and discussed above are statisti-
cally significant by the Student’st test (p < 0.01). Other sig-
nificant effects include the following: a reduction in the nor-
malized uncertainty from CCN activity in the LIMMIXED
simulation (after controlling for the effect of particle size;
p < 0.01) and an increase in the normalized uncertainty from
particle size as particle size increases (p < 0.01). Three of
the statistically significant interactions between model pa-
rameters and the normalized model uncertainties are illus-
trated in the linear effect diagrams shown in Fig.9. Each di-
agram shows the marginal effect of one of the three predic-
tor variables (particle size, CCN activity, and IN sensitivity
case), while the others are held constant (Fox, 1987, 2003).

6 Discussion

In this study, we have focused on the impact of model param-
eters describing particle characteristics that affect simulated
aerosol removal processes within the context of a particu-
lar realization of a global chemistry-climate model. However,
tracer transport in global chemistry-climate models can also
be sensitive to many other aspects of the model that are be-
yond the scope of this study, such as model resolution, the
use of prescribed meteorology to nudge the chemistry cli-
mate model towards the observed atmospheric state (Aghedo
et al., 2010), numerical formulations of atmospheric dynam-
ics (Rasch et al., 2006), and the formulation of the parameter-
ization of deep convective transport (Mahowald et al., 1995;
Luo et al., 2003; Tost et al., 2006b; Lawrence and Salzmann,
2008). The sensitivity of modelled transport to particle char-
acteristics as simulated here could potentially change if these
or other aspects of the model were changed. We did not con-
sider changes in the aerosol size distribution due to aerosol
microphysics and/or cloud processing (Hoose et al., 2008),
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Fig. 8. Top: normalized model uncertainty from CCN activity, as
a function of particle diameter. Bottom: normalized model uncer-
tainty due to particle size, as a function of particle size. Lines in
both panels are local polynomial regression fits to the points, and
are provided as a guide to the eye. The color key is indicated in the
top panel.

sider changes in the aerosol size distribution due to aerosol
microphysics and/or cloud processing (Hoose et al., 2008),
which could introduce additional uncertainty into the aerosol
transport and residence times.

Uncertainty in the estimation of global mean emissions
arises from both observation uncertainty and uncertainty in
model parameters, including particle size, particle CCN ac-
tivity, and the rate of ice nucleation scavenging in cold and
mixed-phase clouds. Relative to the observation uncertainty
(5 %ile to 95 %ile of the Monte Carlo ensemble), the normal-
ized model uncertainty due to CCN activity or a change in
particle size of 1 µm is typically between 10 % and 40 %. The
model uncertainty from ice nucleation scavenging in cold
clouds was negligible, but the normalized model uncertainty
from ice nucleation scavenging in mixed-phase clouds was
10 %–20 %.

The sensitivity to scavenging in mixed-phase clouds is per-
haps surprisingly large, a reflection of the large uncertainty in
the process, for which it is difficult to find constraints from
observations. Other studies have shown that simulated par-
ticle transport to high latitudes and the upper troposphere
in particular is highly sensitive to the scavenging rates in
mixed-phase clouds, and moderately sensitive to scavenging
rates in ice clouds (Burrows, 2011; Bourgeois and Bey, 2011;
Zhang et al., 2012). As the relative contributions of different
source regions to particulate air pollution in the Arctic has
been a matter of significant interest for scientific research and
public policy in recent years, this may deserve additional at-
tention.

Since transport and removal processes are the basis for
the correct simulation of the distributions of any atmospheric
aerosol, some of the results of this study also are broadly
applicable to other coarse atmospheric aerosols. The depen-
dence of atmospheric residence time (attributable to trans-
port and removal) on size and emission region is a result
that holds generally for particles emitted from those regions
(Fig. 1). The important contribution of uncertainty in particle
size to uncertainties in simulated particle residence time will
also be applicable for other coarse aerosols, particularly as
size approaches 10 µm (Fig. 6). The activation of particles as
CCN is better constrained for many other atmospheric par-
ticle types than for bacterial aerosol, so the contribution of
CCN uncertainty may be reduced in other cases. For fine
(submicron) aerosol particles, the relative contributions of
different uncertainty types are likely to differ from the re-
sults presented here, as the efficiency of removal processes
changes with size.

7 Conclusions

In this study, we estimated emissions of bacterial aerosol
from inversion of atmospheric transport by a Monte Carlo
Markov Chain (MCMC) method. Bacterial aerosols were
treated as passive (non-reactive) tracers, thus we character-

Fig. 8. Top: normalized model uncertainty from CCN activity as
a function of particle diameter. Bottom: normalized model uncer-
tainty due to particle size as a function of particle size. Lines in
both panels are local polynomial regression fits to the points and
are provided as a guide to the eye. The colour key is indicated in the
top panel.

which could introduce additional uncertainty into the aerosol
transport and residence times.

Uncertainty in the estimation of global mean emissions
arises from both observation uncertainty and uncertainty in
model parameters, including particle size, particle CCN ac-
tivity, and the rate of ice nucleation scavenging in cold and
mixed-phase clouds. Relative to the observation uncertainty
(5–95th percentile of the Monte Carlo ensemble), the nor-
malized model uncertainty due to CCN activity or a change
in particle size of 1 µm is typically between 10 and 40 %. The
model uncertainty from ice nucleation scavenging in cold
clouds was negligible, but the normalized model uncertainty
from ice nucleation scavenging in mixed-phase clouds was
10–20 %.

The sensitivity to scavenging in mixed-phase clouds is per-
haps surprisingly large – a reflection of the large uncertainty
in the process – for which it is difficult to find constraints
from observations. Other studies have shown that simulated
particle transport to high latitudes and the upper troposphere
in particular is highly sensitive to the scavenging rates in
mixed-phase clouds, and moderately sensitive to scavenging
rates in ice clouds (Burrows, 2011; Bourgeois and Bey, 2011;
Zhang et al., 2012). As the relative contributions of different
source regions to particulate air pollution in the Arctic has
been a matter of significant interest for scientific research and
public policy in recent years, this may deserve additional at-
tention.

Since transport and removal processes are the basis for
the correct simulation of the distributions of any atmospheric
aerosol, some of the results of this study also are broadly
applicable to other coarse atmospheric aerosols. The depen-
dence of atmospheric residence time (attributable to trans-
port and removal) on size and emission region is a result
that holds generally for particles emitted from those regions
(Fig.1). The important contribution of uncertainty in particle
size to uncertainties in simulated particle residence time will
also be applicable for other coarse aerosols, particularly as
size approaches 10 µm (Fig.6). The activation of particles as
CCN is better constrained for many other atmospheric par-
ticle types than for bacterial aerosol, so the contribution of
CCN uncertainty may be reduced in other cases. For fine
(submicron) aerosol particles, the relative contributions of
different uncertainty types are likely to differ from the re-
sults presented here as the efficiency of removal processes
changes with size.

7 Conclusions

In this study, we estimated emissions of bacterial aerosol
from inversion of atmospheric transport by a Markov Chain
Monte Carlo (MCMC) method. Bacterial aerosols were
treated as passive (non-reactive) tracers; thus, we character-
ize the impacts of model transport and removal processes in
isolation from other model processes such as aerosol micro-
physics or chemistry. The method presented here and applied
to a comparatively simple model setup can be adapted in a
straightforward way for application to more complex scenar-
ios.

An MCMC inversion was applied to estimate emissions of
bacteria-containing particles from different ecosystems given
a set of mean observed concentrations and associated uncer-
tainties, analogous toBurrows et al.(2009a). We performed
both an unconstrained inversion (NO-PRIOR) and an inver-
sion constrained by a prior assumption that emissions must
be positive (PRIOR-POS). The NO-PRIOR inversion leaves
open the possibility of an underestimate of deposition that
can result in a negative inferred flux. However, the high cor-
relations between the inferred fluxes in different ecosystems
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Fig. 9. Illustration of the marginal effects of model parameters on the model uncertainty, shown in linear effects plots following Fox (1987,
2003). Each plot shows the values predicted by a generalized linear model across the range of values of a main predictor variable, while other
predictor variables are held constant at an average value. Left: effect of particle size on CCN uncertainty, controlling for IN sensitivity case.
Middle: effect of CCN activity on size uncertainty, controlling for IN sensitivity case. Right: effect of sensitivity case on CCN uncertainty,
controlling for CCN activity and size. Red dashed lines indicate the 95 %-ile confidence interval.

ize the impacts of model transport and removal processes in
isolation from other model processes such as aerosol micro-
physics or chemistry. The method presented here and applied
to a comparatively simple model setup can be adapted in a
straightforward way for application to more complex scenar-
ios.

An MCMC inversion was applied to estimate emissions of
bacteria-containing particles from different ecosystems given
a set of mean observed concentrations and associated uncer-
tainties, analogous to Burrows et al. (2009a). We performed
both an unconstrained inversion (NO-PRIOR) and an inver-
sion constrained by a prior assumption that emissions must
be positive (PRIOR-POS). The NO-PRIOR inversion leaves
open the possibility of an underestimate of deposition that
can result in a negative inferred flux. However, the high cor-
relations between the inferred fluxes in different ecosystems
indicate that negative inferred fluxes can be better explained
by the problem being poorly constrained.

The results of the MCMC estimation agree well with re-
sults from a constrained linear optimization for the same
problem, as presented in Burrows et al. (2009a). In the
MCMC inversion, the range of uncertainty attributed to ob-
servations is reduced nearly by half: for 1 µm, CCN-ACTIVE
tracers, the 5-%ile to 95-%ile range is 400–1800 Gga−1 in
Burrows et al. (2009a), compared with 470–1100 Gga−1

from the MCMC ensemble, a reduction in the uncertainty
range of 45 %. The narrower range of the uncertainty in
the present study is likely better explained by the fact that
we here treat the observation uncertainty here as having
a Gaussian probability distribution, rather than a homoge-
neous probability distribution. Also, the ecosystems shown in
Burrows et al. (2009a) to be most poorly constrained by the
observations, wetlands and coastal regions, were similarly

poorly constrained when using the Monte Carlo method. This
is apparent in the broad spread and irregular shapes of the
distributions in those regions (Fig. 5).

The contribution of the uncertainties attributable to par-
ticle size and CCN activity was unexpectedly large com-
pared to observation uncertainty for this case study, implying
that these parameters should be better constrained by obser-
vations and/or the associated uncertainty should be explic-
itly considered in the inversion of atmospheric aerosol trans-
port and uncertainty analyses in global atmospheric mod-
elling studies involving aerosols. Ice nucleation scavenging
in mixed-phase clouds in particular is rarely considered, but
may contribute significantly to overall model uncertainty for
problems involving aerosol transport. Even in cases with very
large observation uncertainty, the contribution of model pa-
rameter uncertainty can be substantial.

The results of this study can be used to help guide fu-
ture observations of bacterial aerosol that aim to improve
the estimation of sources. In particular, they make clear that
the uncertainty in the particle size distribution makes a non-
negligible contribution to the uncertainty in source estimates,
future observations of bacterial aerosol should include size
information if possible.
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Fig. 9. Illustration of the marginal effects of model parameters on the model uncertainty, shown in linear effects plots followingFox (1987,
2003). Each plot shows the values predicted by a generalized linear model across the range of values of a main predictor variable, while other
predictor variables are held constant at an average value. Left: effect of particle size on CCN uncertainty, controlling for IN sensitivity case.
Middle: effect of CCN activity on size uncertainty, controlling for IN sensitivity case. Right: effect of sensitivity case on CCN uncertainty,
controlling for CCN activity and size. Red dashed lines indicate the 95th percentile confidence interval.

indicate that negative inferred fluxes can be better explained
by the problem being poorly constrained.

The results of the MCMC estimation agree well with re-
sults from a constrained linear optimization for the same
problem, as presented inBurrows et al.(2009a). In the
MCMC inversion, the range of uncertainty attributed to ob-
servations is reduced nearly by half: for 1 µm, CCN-ACTIVE
tracers, the 5–95th percentile range is 400–1800 Gga−1 in
Burrows et al.(2009a), compared with 470–1100 Gga−1

from the MCMC ensemble, a reduction in the uncertainty
range of 45 %. The narrower range of the uncertainty in the
present study is likely better explained by the fact that we
here treat the observation uncertainty here as having a Gaus-
sian probability distribution rather than a homogeneous prob-
ability distribution. Also, the ecosystems shown inBurrows
et al.(2009a) to be most poorly constrained by the observa-
tions – wetlands and coastal regions – were similarly poorly
constrained when using the Monte Carlo method. This is ap-
parent in the broad spread and irregular shapes of the distri-
butions in those regions (Fig.5).

The contribution of the uncertainties attributable to par-
ticle size and CCN activity was unexpectedly large com-
pared to observation uncertainty for this case study, imply-
ing that these parameters should be better constrained by
observations and/or the associated uncertainty should be ex-
plicitly considered in the inversion of atmospheric aerosol
transport and uncertainty analyses in global atmospheric
modelling studies involving aerosols. Ice nucleation scaveng-
ing in mixed-phase clouds in particular is rarely considered,
but may contribute significantly to overall model uncertainty
for problems involving aerosol transport. Even in cases with
very large observation uncertainty, the contribution of model
parameter uncertainty can be substantial.

The results of this study can be used to help guide fu-
ture observations of bacterial aerosol that aim to improve
the estimation of sources. In particular, they make clear that

the uncertainty in the particle size distribution makes a non-
negligible contribution to the uncertainty in source estimates,
and future observations of bacterial aerosol should include
size information if possible.
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