Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Preprints
https://doi.org/10.5194/acp-2020-691
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-691
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  18 Aug 2020

18 Aug 2020

Review status
This preprint is currently under review for the journal ACP.

Observed changes in the temperature dependence response of surface ozone under NOx reductions

Noelia Otero1,2, Henning W. Rust2, and Tim Butler1,2 Noelia Otero et al.
  • 1Institute for Advanced Sustainability Studies, Potsdam, Germany
  • 2Institut für Meteorologie, Freie Universität Berlin, Germany

Abstract. Due to the strong temperature dependence of surface ozone concentrations (O3), future warmer conditions may worsen ozone pollution levels despite continued efforts on emission controls of ozone precursors. Using long-term measurements of hourly O3 concentrations co-located with NOx concentrations in stations distributed throughout Germany, we assess changes in the climate penalty, defined as the slope of ozone-temperature relationship during the period 1999–2018. We find a stronger temperature sensitivity in the urban stations over the southwestern regions, especially in the first period of the study (1999–2008).We show a decrease in the climate penalty in most of stations during the second period of the study (2009–2018), with some exceptions (e.g. Berlin) where the climate penalty did not show significant changes. To examine the impacts of NOx reductions on the O3 sensitivity to temperature, we propose a statistical approach based on generalized additive models (GAMs) to describe ozone production rates, inferred from hourly observations, as a function of NOx and temperature, among other variables relevant during the O3 production. We find lower O3 production rates during the second period (2009–2018) at most stations and a decreasing sensitivity to temperature, pointing out that lowering NOx concentrations resulted in decreasing O3 production rates. However, we also observe changes in the shape of the function representing the O3-temperature relationship, which indicate that NOx reductions alone can not explain the changes in the temperature dependence of O3. Our analysis would suggest that decreasing NOx concentrations are not the only factor causing the observed changes in the climate penalty factor.

Noelia Otero et al.

Interactive discussion

Status: open (until 13 Oct 2020)
Status: open (until 13 Oct 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Noelia Otero et al.

Noelia Otero et al.

Viewed

Total article views: 149 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
104 43 2 149 14 4 5
  • HTML: 104
  • PDF: 43
  • XML: 2
  • Total: 149
  • Supplement: 14
  • BibTeX: 4
  • EndNote: 5
Views and downloads (calculated since 18 Aug 2020)
Cumulative views and downloads (calculated since 18 Aug 2020)

Viewed (geographical distribution)

Total article views: 178 (including HTML, PDF, and XML) Thereof 176 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 29 Sep 2020
Publications Copernicus
Download
Short summary
Surface ozone concentrations are strongly correlated with temperature in summertime. Using long-term measurements, we investigate changes in the observed relationship between ozone and temperature over Germany. We propose a new statistical approach based on Generalized Additive Models (GAMs) to describe ozone production rates as a function of nitrogen oxides (NOx) and temperature. Our results suggest that NOx reductions alone can not explain the changes in the temperature dependence of ozone.
Surface ozone concentrations are strongly correlated with temperature in summertime. Using...
Citation
Altmetrics