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Modeling ozone production rates with GAMs
Generalized Additve Models (GAMs)(Hastie and Tibshinari 1990; Wood 2006) are useful tools to examine
complex non-linear relationships and have been previously applied to model air pollutants (Barmpadimos
et al. 2011; Boleti, Hueglin, and Takahama 2019; Carslaw, Beevers, and Tate 2007; Jackson et al. 2009).
We have used GAMs to model O3 production rates (∆O3) as a function of key variables that influence O3
production. GAMs are extensions of the generalized linear model (McCullagh and Nelder 1989) that work
under the assumption that there is an additive effect between the response variable and the explanatory
variables (covariates). Generalized linear models allow for response distributions other than the Normal
distribution, and for a degree of non-linearity in the model structure (McCullagh and Nelder 1989). The
basic form of GLM is represented as:

g(µi) = Xiβ (1)

where µi = E[Yi], g is a monotic function, Xi is the ith row of X (model matrix) and β is a vector of unknown
parameters. GLM assumes that Yi are independent and Yi ∼ some exponential family distribution (for more
details see McCullagh and Nelder 1989; Wood 2006).

As stated in the manuscript (see section 3.3), GAM establishes a relationship between the response and a sum
of smooth functions of the covariates through a link function (Hastie and Tibshinari 1990; Wood 2006). Thin
plate regression splines were used as smoothers to describe a nonlinear relationship between the response and
the covariates (Wood 2006). In addition, GAMs allow to model interactions created between covariates with
different smoothers (or degrees of smoothness) assumed for each covariate (Wood 2006; Pedersen et al. 2019).
Here, we introduced interactions terms using tensor products to represent the the interacting effects of two
covariates (e.g. temperature-NOx) on the response (∆O3). For a general overview of GAM we refer to Hastie
and Tibshinari (1990) and Wood (2006).
All calculations were carried out using the statistical software R (R Development Core Team 2018) with the
mgcv package (Wood 2011).

Model selection
A set of covariates were used to build the GAMs: temperature, NOx, VPD, O3 concentrations from the
previous hour (CO3(t− 1)), boundary layer height growth rate (∆BLH) and the MDA8 concentrations from
the previous day (CMDA8(t− 24)). A forward selection process was used to select the covariates that better
explain the ∆O3. During the selection procedure, the interactions between two influencing covariates are
also included in order to represent physical processes such as dry deposition, represented by the interaction
between VPD and CO3(t− 1), and mixing processes captured by the interaction term between ∆BLH and
CMDA8(t− 24).

The selection process can be summarised as follows:

1. We first start with a baseline model that included the nonlinear relationship between NOx and
temperature as follows:
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∆O3 = f(T,NOx) (2)

where f(T, NOx) represents the interaction between temperature (T) and NOx concentrations and it is
included as a tensor product (Wood 2017). Observing the skewness of the NOx data led us to introduce a
modification in the baseline model using a log transformation of NOx .

2. We successively add further covariates and/or interactions that can improve the model performance.
3. The deviance explained and the Akaike information criterion (AIC) (Akaike 1974) are calculated in

each step.
4. The GAM with the lowest AIC is selected as the best model.

We applied this procedure separately for each station and period, namely GAM-P1 for the first period
(1999-2008) and GAM-P2 for the second period (2009-2019). Our goal with this process is to define a common
model well defined across all of the stations (i.e. same structure in terms of covariates). Figure S1 shows the
models built at each step (i.e. adding the covariates and interactions) during the selection process for the
urban station in Berlin during the first period 1999-2008. It can be observed that the model performance
considerably improves when adding the covariates and the complexity (i.e. more interaction terms).

Figure S1. AIC and deviance explained (DEV) for each model used during the stepwise process at one rural
station during the first period 1999-2008.

We obtained similar results for most of stations, which led us to select the best model with the following
structure that includes three interaction terms:

∆O3 = T ∗ NOx + V PD ∗ CO3(t− 1) + ∆BLH ∗ CMDA8(t− 24) (3)

The model performance was assessed through standard diagnostic plots: QQ plots of the deviance residuals,
scatter plots of the residuals against the fitted values, histogram of residuals and scatter plots the response
against the fitted values (Wood 2006). In general the diagnostic plot did not show concerning patterns in the
residuals. As an example, Fig. S2 shows the standard plots to check the model assumptions obtained by the
function gam.check()(Wood 2011).
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Figure S2. Diagnostic plots for the Berlin urban station (DEBE034) for the period 1999-2008: QQ-plot of
residuals, linear predictor vs. residuals, the histogram of residuals and the plot of fitted values vs. response.
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Figure S3. Spatial distribution of trends calculated separetely for each station and period, 1999-2008,
2009-2018, and the complete period 1999-2018. Bold black circles represent significant trends.
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Figure S4. Time series of the annual 5th, 50th, 95th, percentiles for the rest of the urban and rural stations
not presented in the main text
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Figure S5. Countour plots obtained for the interaction term temperature and NOx from each GAMs built
separetaly at each urban station and corresponding period.
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Figure S6. Estimated regression lines for urban stations of the ozone response to temperature while holding
NOx concentrations constant (mean values for each period and station). Red line correspond to the prediction
for the first period 1999-2008 (GAM-P1), blue line corresponds to the second period 2009-2018 and gree
line corresponds to the projected response using GAM-P1 with mean NOx conditions of the second period.
Shaded bands represent the pointwise 95% confidence interval.
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Figure S7. As Fig. S5, but for rural stations.
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Figure S8. As Fig. S6, but for rural stations.

Figure S9. As Fig. 5 in the main text., but for the suburban stations.
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Figure S10. Contour plot for the interaction VPD-CO3(t− 1) at the suburban stations for the first period
1999-2008 and second period 2009-2018.

Figure S11. Contour plot for the interaction ∆BLH-CMDA8(t− 24) at the suburban stations for the periods
1999-2008 and 2009-2018 at the suburban stations.
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