Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality
Abstract. In this study 1 year of ceilometer measurements taken in the Kathmandu Valley, Nepal, in the framework of the SusKat project (A Sustainable Atmosphere for the Kathmandu Valley) were analysed to investigate the diurnal variation of the mixing layer height (MLH) and its dependency on the meteorological conditions. In addition, the impact of the MLH on the temporal variation and the magnitude of the measured black carbon concentrations are analysed for each season. Based on the assumption that black carbon aerosols are vertically well mixed within the mixing layer and the finding that the mixing layer varies only little during night time and morning hours, black carbon emission fluxes are estimated for these hours and per month. Even though this method is relatively simple, it can give an observationally based first estimate of the black carbon emissions in this region, especially illuminating the seasonal cycle of the emission fluxes.
The monthly minimum median MLH values typically range between 150 and 200 m during night and early morning hours, the monthly maximum median values between 625 m in July and 1460 m in March. Seasonal differences are not only found in the absolute MLHs, but also in the duration of the typical daytime maximum ranging between 2 and 3 h in January and 6–7 h in May. During the monsoon season a diurnal cycle has been observed with the smallest amplitude (typically between 400 and 500 m), with the lowest daytime mixing height of all seasons (maximum monthly median values typically between 600 and 800 m), and also the highest night-time and early morning mixing height of all seasons (minimum monthly median values typically between 200 and 220 m). These characteristics can mainly be explained with the frequently present clouds and the associated reduction in incoming solar radiation and outgoing longwave radiation.
In general, the black carbon concentrations show a clear anticorrelation with MLH measurements, although this relation is less pronounced in the monsoon season. The daily evolution of the black carbon diurnal cycle differs between the seasons, partly due to the different meteorological conditions including the MLH. Other important reasons are the different main emission sources and their diurnal variations in the individual seasons. The estimation of the black carbon emission flux for the morning hours show a clear seasonal cycle with maximum values in December to April. Compared to the emission flux values provided by different emission databases for this region, the estimated values here are considerably higher. Several possible sources of uncertainty are considered, and even the absolute lower bound of the emissions based on our methodology is higher than in most emissions datasets, providing strong evidence that the black carbon emissions for this region have likely been underestimated in modelling studies thus far.