Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8839-2020
https://doi.org/10.5194/acp-20-8839-2020
Research article
 | 
27 Jul 2020
Research article |  | 27 Jul 2020

Determination and climatology of the diurnal cycle of the atmospheric mixing layer height over Beijing 2013–2018: lidar measurements and implications for air pollution

Haofei Wang, Zhengqiang Li, Yang Lv, Ying Zhang, Hua Xu, Jianping Guo, and Philippe Goloub

Related authors

The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020,https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
PRELIMINARY SENSITIVITY STUDY OF AEROSOL LAYER HEIGHT FROM SYNTHETIC MULTIANGLE POLARIMETRIC REMOTE SENSING MEASUREMENTS
W. Z. Hou, H. F. Wang, Z. Q. Li, L. L. Qie, B. Y. Ge, C. Fan, and S. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 63–69, https://doi.org/10.5194/isprs-archives-XLII-3-W9-63-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-63-2019, 2019
Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China
Jun Chen, Zhanqing Li, Min Lv, Yuying Wang, Wei Wang, Yingjie Zhang, Haofei Wang, Xing Yan, Yele Sun, and Maureen Cribb
Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019,https://doi.org/10.5194/acp-19-1327-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Atmospheric processing and aerosol aging responsible for observed increase in absorptivity of long-range-transported smoke over the southeast Atlantic
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025,https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Discussion of the spectral slope of the lidar ratio between 355 and 1064 nm from multiwavelength Raman lidar observations
Moritz Haarig, Ronny Engelmann, Holger Baars, Benedikt Gast, Dietrich Althausen, and Albert Ansmann
Atmos. Chem. Phys., 25, 7741–7763, https://doi.org/10.5194/acp-25-7741-2025,https://doi.org/10.5194/acp-25-7741-2025, 2025
Short summary
Observational constraints suggest a smaller effective radiative forcing from aerosol–cloud interactions
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025,https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Analysis of a saline dust storm from the Aralkum Desert – Part 1: Consistency between multisensor satellite aerosol products
Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn
Atmos. Chem. Phys., 25, 7403–7429, https://doi.org/10.5194/acp-25-7403-2025,https://doi.org/10.5194/acp-25-7403-2025, 2025
Short summary
Retrieval of microphysical properties of dust aerosols from extinction, backscattering and depolarization lidar measurements using various particle scattering models
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
Atmos. Chem. Phys., 25, 6787–6821, https://doi.org/10.5194/acp-25-6787-2025,https://doi.org/10.5194/acp-25-6787-2025, 2025
Short summary

Cited articles

Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. 
Batchvarova, E., Cai, X., Gryning, S. E., and Steyn, D.: Modelling internal boundary layer development in a region with complex coastline, Bound.-Lay. Meteorol., 90, 1–20, https://doi.org/10.1023/a:1001751219627, 1999. 
Baxter, R.: Determination of mixing heights from data collected during the 1985 SCCCAMP field program, J. Appl. Meteor., 30, 598–606, 1991. 
Brooks, I. M.: Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Technol., 20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2, 2003. 
Beyrich, F. and Leps, J. P.: An operational mixing height data set from routine radiosoundings at Lindenberg: Methodology, Meteorol. Z., 21, 337–348, https://doi.org/10.1127/0941-2948/2012/0333, 2012. 
Download
Short summary
Lidar shows good performance in calculating the convective layer height in the daytime and the residual layer height at night, as well as having the potential to describe the stable layer height at night. The MLH seasonal change in Beijing indicates that it is low in winter and autumn and high in spring and summer. From 2014 to 2018, the magnitude of the diurnal cycle of MLH increased year by year. MLH from lidar shows better accuracy than a radiosonde when calculating surface pollution.
Share
Altmetrics
Final-revised paper
Preprint