Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-5129-2020
https://doi.org/10.5194/acp-20-5129-2020
Research article
 | 
30 Apr 2020
Research article |  | 30 Apr 2020

Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China

Wei Yuan, Ru-Jin Huang, Lu Yang, Jie Guo, Ziyi Chen, Jing Duan, Ting Wang, Haiyan Ni, Yongming Han, Yongjie Li, Qi Chen, Yang Chen, Thorsten Hoffmann, and Colin O'Dowd

Related authors

Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024,https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Measurement report: Brown carbon aerosol in polluted urban air of the North China Plain – day–night differences in the chromophores and optical properties
Yuquan Gong, Ru-Jin Huang, Lu Yang, Ting Wang, Wei Yuan, Wei Xu, Wenjuan Cao, Yang Wang, and Yongjie Li
Atmos. Chem. Phys., 23, 15197–15207, https://doi.org/10.5194/acp-23-15197-2023,https://doi.org/10.5194/acp-23-15197-2023, 2023
Short summary
Measurement report: PM2.5-bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon
Wei Yuan, Ru-Jin Huang, Lu Yang, Ting Wang, Jing Duan, Jie Guo, Haiyan Ni, Yang Chen, Qi Chen, Yongjie Li, Ulrike Dusek, Colin O'Dowd, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3685–3697, https://doi.org/10.5194/acp-21-3685-2021,https://doi.org/10.5194/acp-21-3685-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Molecular composition, sources, and evolution of atmospheric organic aerosols in a basin city in China
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
Atmos. Chem. Phys., 25, 8983–9004, https://doi.org/10.5194/acp-25-8983-2025,https://doi.org/10.5194/acp-25-8983-2025, 2025
Short summary
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: insights from single-particle aerosol mass spectrometry
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
Atmos. Chem. Phys., 25, 8891–8905, https://doi.org/10.5194/acp-25-8891-2025,https://doi.org/10.5194/acp-25-8891-2025, 2025
Short summary
Climatology of aerosol pH and its controlling factors at the Melpitz continental background site in Central Europe
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8871–8889, https://doi.org/10.5194/acp-25-8871-2025,https://doi.org/10.5194/acp-25-8871-2025, 2025
Short summary
Technical note: Towards a stronger observational support for haze pollution control by interpreting carbonaceous aerosol results derived from different measurement approaches
Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, and Jiu-meng Liu
Atmos. Chem. Phys., 25, 8493–8505, https://doi.org/10.5194/acp-25-8493-2025,https://doi.org/10.5194/acp-25-8493-2025, 2025
Short summary
Particle flux–gradient relationships in the high Arctic: emission and deposition patterns across three surface types
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
Atmos. Chem. Phys., 25, 8455–8474, https://doi.org/10.5194/acp-25-8455-2025,https://doi.org/10.5194/acp-25-8455-2025, 2025
Short summary

Cited articles

Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, 2017. 
Bandowe, B. A. M., Meusel, H., Huang, R-J., Ho, K., Cao, J., Hoffmann, T., and Wilcke, W.: PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment, Sci. Total Environ., 473–474, 77–87, 2014. 
Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell, L. M., Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean, J. Geophys. Res.-Atmos., 119, 11743–11759, https://doi.org/10.1002/2014JD022127, 2014. 
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013. 
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010. 
Download
Short summary
We characterized light-absorbing properties, chromophore composition and sources of brown carbon (BrC) in Xi'an; identified three groups of light-absorbing organics; and quantified their contribution to overall BrC absorption. Our results showed that vehicle emissions and secondary formation are major sources of BrC in spring, coal combustion and vehicle emissions are major sources in fall, biomass burning and coal combustion become major sources in winter, and secondary BrC dominates in summer.
Share
Altmetrics
Final-revised paper
Preprint