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Abstract. The impact of brown carbon aerosol (BrC) on
the Earth’s radiative forcing balance has been widely rec-
ognized but remains uncertain, mainly because the relation-
ships among BrC sources, chromophores and optical proper-
ties of aerosol are poorly understood. In this work, the light
absorption properties and chromophore composition of BrC
were investigated for samples collected in Xi’an, northwest-
ern China, from 2015 to 2016. Both absorption Ångström ex-
ponent (AAE) and mass absorption efficiency (MAE) show
distinct seasonal differences, which could be attributed to
the differences in sources and chromophore composition of
BrC. Three groups of light-absorbing organics were found to
be important BrC chromophores, including compounds that
have multiple absorption peaks at wavelengths > 350 nm (12
polycyclic aromatic hydrocarbons and their derivatives) and
compounds that have a single absorption peak at wavelengths
< 350 nm (10 nitrophenols and nitrosalicylic acids and 3

methoxyphenols). These measured BrC chromophores show
distinct seasonal differences and contribute on average about
1.1 % and 3.3 % of light absorption of methanol-soluble BrC
at 365 nm in summer and winter, respectively, about 7 and
5 times higher than the corresponding carbon mass fractions
in total organic carbon. The sources of BrC were resolved
by positive matrix factorization (PMF) using these chro-
mophores instead of commonly used non-light-absorbing or-
ganic markers as model inputs. Our results show that vehic-
ular emissions and secondary formation are major sources of
BrC (∼ 70 %) in spring, coal combustion and vehicular emis-
sions are major sources (∼ 70 %) in fall, biomass burning and
coal combustion become major sources (∼ 80 %) in winter,
and secondary BrC dominates (∼ 60 %) in summer.
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1 Introduction

Brown carbon (BrC) is an important component of atmo-
spheric aerosol particles and has significant effects on ra-
diative forcing and climate (Feng et al., 2013; Laskin et al.,
2015; Zhang et al., 2017a). BrC can efficiently absorb solar
radiation and reduce the photolysis rates of atmospheric radi-
cals (Jacobson, 1999; Li et al., 2011; Mok et al., 2016), which
ultimately influences the atmospheric photochemistry pro-
cess, the formation of secondary organic aerosol (SOA) and
therefore the regional air quality (Mohr et al., 2013; Laskin
et al., 2015; Moise et al., 2015). In addition, some compo-
nents in BrC, such as nitrated aromatic compounds (NACs;
Teich et al., 2017; Wang et al., 2018) and polycyclic aromatic
hydrocarbons (PAHs; Samburova et al., 2016; Huang et al.,
2018), have adverse effects on human health (Bandowe et
al., 2014; Shen et al., 2018). The significant effects of BrC
on environment, climate, air quality and living things call
for more studies to understand its chemical characteristics,
sources and the links with optical properties.

Investigating the chemical composition of BrC at the
molecular level is necessary because even small amounts of
compounds can have a significant effect on the light absorp-
tion properties of BrC and profound atmospheric implica-
tions (Mohr et al., 2013; Zhang et al., 2013; Teich et al.,
2017; Huang et al., 2018). A number of studies have inves-
tigated the BrC composition at the molecular level (Mohr
et al., 2013; Zhang et al., 2013; Chow et al., 2015; Sam-
burova et al., 2016; Lin et al., 2016, 2017, 2018; Teich et
al., 2017; Huang et al., 2018; Lu et al., 2019). For exam-
ple, Zhang et al. (2013) measured eight NACs in Los An-
geles and found that they contributed about 4 % of water-
soluble BrC absorption at 365 nm. Huang et al. (2018) mea-
sured 18 PAHs and their derivatives in Xi’an and found that
they accounted for on average ∼ 1.7 % of the overall ab-
sorption of methanol-soluble BrC. A state-of-the-art high-
performance liquid chromatography–photodiode array–high-
resolution mass spectrometry (HPLC-PDA-HRMS) was ap-
plied to investigate the elemental composition of BrC chro-
mophores in biomass-burning aerosol (Lin et al., 2016, 2017,
2018). Lin et al. (2016) reported that in biofuel-burning sam-
ples (sawgrass, peat, ponderosa pine and black spruce), about
40 %–60 % of the bulk BrC absorption in the wavelength
range of 300–500 nm may be attributed to 20 strong chro-
mophores, and in another study (Lin et al., 2017) they re-
ported that nitroaromatic compounds accounted for ∼ 50 %
of the total absorption of water-soluble BrC during the
biomass-burning event in a nationwide bonfire festival in Is-
rael. Despite these efforts, the molecular composition of at-
mospheric BrC still remains largely unknown due to its com-
plexity in emission sources and formation processes.

Field observations and laboratory studies show that BrC
has various sources, including primary emissions such as
combustion and secondary formation from various atmo-
spheric processes (Laskin et al., 2015). Biomass burning,

including forest fires and burning of crop residues, is con-
sidered to be the main source of BrC (Teich et al., 2017;
Lin et al., 2017). Coal burning and vehicle emissions are
also important primary sources of BrC (Yan et al., 2017;
Xie et al., 2017; Sun et al., 2017; Li et al., 2019; Song
et al., 2019). Secondary BrC is produced through multiple-
phase reactions occurring in or between the gas phase, par-
ticle phase and cloud droplets. For example, nitrification of
aromatic compounds (Harrison et al., 2005; Lu et al., 2011),
oligomers of acid-catalyzed condensation of hydroxyl alde-
hyde (De Haan et al., 2009; Shapiro et al., 2009), and reaction
of ammonia (NH3) or amino acids with carbonyls (De Haan
et al., 2011; Nguyen et al., 2013; Flores et al., 2014) can
all produce BrC. Condensed-phase reactions and aqueous-
phase reactions have also been found to be important forma-
tion pathways for secondary BrC in ambient air (Gilardoni
et al., 2016). In addition, atmospheric aging processes can
lead to either enhancement or bleaching of the BrC absorp-
tion (Lambe et al., 2013; Lee et al., 2014; Zhong and Jang,
2014), further challenging the characterization of BrC.

As the starting point of the Silk Road, Xi’an is an impor-
tant inland city in northwestern China experiencing severe
particulate air pollution, especially during the heating period,
with enhanced coal combustion and biomass-burning activi-
ties (Wang et al., 2016; Ni et al., 2018). In this study, we per-
formed spectroscopic measurement and chemical analysis of
PM2.5 filter samples in Xi’an to investigate (1) seasonal vari-
ations in the light absorption properties, chromophore com-
position of BrC and their relationships and (2) sources of BrC
in different seasons based on the positive matrix factorization
(PMF) model with light-absorbing organic markers as input
species.

2 Experimental

2.1 Aerosol sampling

A total of 112 daily ambient PM2.5 filter samples were
collected on pre-baked (780 ◦C, 3 h) quartz-fiber filters
(20.3× 25.4 cm; Whatman, QM-A, Clifton, NJ, USA)
in November–December 2015 and April–May, July and
October–November 2016, representing winter, spring, sum-
mer and fall, respectively. Filter samples were collected us-
ing a high-volume PM2.5 air sampler (Tisch, Cleveland, OH)
at a flow rate of 1.05 m3 min−1 on the roof (∼ 10 m a.g.l.;
34.22◦ N, 109.01◦ E) of the Institute of Earth Environment,
Chinese Academy of Sciences, which was surrounded by
residential areas without large industrial activities. After col-
lection, the filter samples were wrapped in baked aluminum
foils and stored in a freezer (−20 ◦C) until further analysis.

2.2 Light absorption measurement

One punch of loaded filter (0.526 cm2) was taken from each
sample and sonicated for 30 min in 10 mL of ultrapure wa-
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ter (> 18.2 M� cm) or methanol (HPLC grade, J.T. Baker,
Phillipsburg, NJ, USA). The extracts were then filtered with
a 0.45 µm PTFE pore syringe filter to remove insoluble ma-
terials. The light absorption spectra of water-soluble and
methanol-soluble BrC were measured with an UV–Vis spec-
trophotometer (300–700 nm) equipped with a liquid waveg-
uide capillary cell (LWCC-3100, World Precision Instru-
ments, Sarasota, FL, USA) following the method by Heco-
bian et al. (2010). The measured absorption data can be con-
verted to the absorption coefficient Absλ (M m−1) by the fol-
lowing equation:

Absλ = (Aλ−A700)
Vl

Va×L
× ln(10), (1)

where A700 is the absorption at 700 nm, serving as a ref-
erence to account for baseline drift, Vl is the volume of
water or methanol that the filter was extracted into, Va is
the volume of sampled air, and L is the optical path length
(0.94 m). A factor of ln(10) is used to convert the log base 10
(recorded by UV–Vis spectrophotometer) to a natural loga-
rithm to provide a base-e absorption coefficient. The absorp-
tion coefficient of water-soluble or methanol-soluble organ-
ics at 365 nm (Abs365) is used to represent water-soluble or
methanol-soluble BrC absorption, respectively.

The mass absorption efficiency (MAE: m2 g C−1) of BrC
in the extracts can be calculated as

MAEλ =
Absλ
M

, (2)

whereM (µg C m−3) is the concentration of water-soluble or-
ganic carbon (WSOC) for water extracts or methanol-soluble
organic carbon (MSOC) for methanol extracts. Note that or-
ganic carbon (OC) is often used to replace MSOC because di-
rect measurement of MSOC is technically difficult and many
studies have shown that most OC (∼ 90 %) can be extracted
by methanol (Chen and Bond, 2010; Cheng et al., 2016; Xie
et al., 2019).

The wavelength-dependent light absorption of chro-
mophores in a solution, termed as absorption Ångström ex-
ponent (AAE), can be described as

Absλ =K · λ−AAE, (3)

where K is a constant related to the concentration of chro-
mophores and AAE is calculated by linear regression of
logAbsλ versus logλ in the wavelength range of 300–410 nm.

2.3 Chemical analysis

OC was measured with a thermal–optical carbon analyzer
(DRI, model 2001) following the IMPROVE-A protocol
(Chow et al., 2011). WSOC was measured with a TOC–TN
(total organic carbon–total nitrogen) analyzer (TOC-L, Shi-
madzu, Japan; Ho et al., 2015).

Organic compounds listed in Table S1 were analyzed
with a gas chromatograph–mass spectrometer (GC–MS; Ag-
ilent Technologies, Santa Clara, CA, USA). Prior to the
GC–MS analysis, the silylation derivatization was con-
ducted using a routine method (e.g., Wang et al., 2006; Al-
Naiema and Stone, 2017). Briefly, a quarter of a 47 mm
filter sample was ultrasonically extracted with 2 mL of
methanol for 15 min and repeated three times. The extracts
were filtered with a 0.45 µm PTFE syringe filter and then
evaporated with a rotary evaporator to ∼ 1 mL and dried
with a gentle stream of nitrogen. Then, 50 µL of N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA-TMCS; Fluka
Analytical, 99 %) and 10 µL of pyridine were added. The
mixture was heated for 3 h at 70 ◦C for silylation. After reac-
tion, 140 µL of n-hexane was added to dilute the derivatives.
Finally, a 2 µL aliquot of the derivatized extracts was intro-
duced into the GC–MS, which was equipped with a DB-5ms
column (Agilent Technologies, Santa Clara, CA, USA), an
electron impact (EI) ionization source (70 eV) and a GC in-
let of 280 ◦C. The GC oven temperature was held at 50 ◦C
for 2 min, ramped up to 120 ◦C at a rate of 15 ◦C min−1

and finally reached 300 ◦C at a rate of 5 ◦C min−1 (held
for 16 min). Note that the derivatization for NACs was con-
ducted at 70 ◦C for 3 h, which is slightly different from the
protocol used in Al-Naiema and Stone (2017) because sym-
metrical peak shapes and high intensities for NACs can also
be obtained under this condition in our study (see Fig. S1).
In our study, 4-nitrophenol-2,3,5,6-d4 was used as an internal
standard to correct for potential loss for NAC quantification
(Chow et al., 2015). For the quantification of other organic
compounds, an external standard method was used through
daily calibration with working standard solutions. Also, for
every 10 samples, a procedural blank and a spiked sample
(i.e., ambient sample spiked with known amounts of stan-
dards) were measured to check the interferences and recov-
eries. The measured recoveries were 80 %–102 %, and the
relative standard deviations (RSDs) were < 10 % for mea-
sured organic compounds.

2.4 Source apportionment of BrC

Source apportionment of methanol-soluble BrC was
performed using PMF as implemented by the multilin-
ear engine (ME-2; Paatero, 1997) via the source-finder
(SoFi) interface written in Igor WaveMetrics (Canonaco
et al., 2013). Abs365,MSOC and the light-absorbing species
including fluoranthene (FLU), pyrene (PYR), chrysene
(CHR), benzo(a)anthracene (BaA), benzo(a)pyrene (BaP),
benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF),
indeno[1,2,3-cd]pyrene (IcdP), benzo(ghi)perylene (BghiP),
9,10-anthracenequinone (9,10AQ), benzanthrone (BEN),
benzo[b]fluoren-11-one (BbF11O), vanillic acid, vanillin and
syringyl acetone were used as model inputs, together with
some commonly used markers, i.e., phthalic acid, hopanes
(17α(H),21β(H)-30-norhopane, 17α(H),21β(H)-hopane,
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Figure 1. Time series of the light absorption coefficient of water-soluble and methanol-soluble BrC at 365 nm (Abs365,WSOC and
Abs365,MSOC, respectively) as well as OC and WSOC concentrations.

17α(H),21β(H)-(22S)-homohopane and 17α(H),21β(H)-
(22R)-homohopane, referred to as HP1–HP4, respectively),
picene and levoglucosan. The input data include species
concentrations and uncertainties. The LOD (limit of de-
tection), calculated as 3 times the standard deviation of
the blank filters, was used to estimate species-specific
uncertainties, following Liu et al. (2017). Furthermore, for
a clear separation of sources profiles, the contribution of
corresponding markers was set to 0 in the sources unrelated
to the markers (see Table S2). This source apportionment
protocol is very similar to our previous study (Huang et al.,
2014).

3 Results and discussion

3.1 Light absorption properties of water- and
methanol-soluble BrC

Figure 1 shows the temporal profiles of Abs365 of water-
and methanol-soluble BrC together with the concentrations
of WSOC and OC (representing MSOC). They all show sim-
ilar seasonal variations, with the highest average in winter,
followed by fall, spring and summer (see Table S3). WSOC
contributed annually 54.4±16.2 % of the OC mass, with the
highest contribution in summer (66.1±15.5 %) and the low-
est contribution in winter (45.1±10.2 %). The higher WSOC
fraction in OC during summer is largely contributed by SOA
and to some extent by biomass-burning emissions because
both SOA and biomass-burning OA consist of a high frac-
tion of WSOC (Ram et al., 2012; Yan et al., 2015; Daellen-
bach et al., 2016). The lower WSOC fractions in OC dur-
ing winter could be attributed to enhanced emissions from
coal combustion which produce a large fraction of water-
insoluble organics (Daellenbach et al., 2016; Yan et al.,
2017). Abs365,MSOC is approximately 2 times (range 1.7–2.3)
higher than Abs365,WSOC, which is similar to the results mea-
sured in Beijing (Cheng et al., 2016); the southeastern Ti-
betan Plateau (Zhu et al., 2018); Gwangju, South Korea (Park

et al., 2018); and the Research Triangle Park, USA (Xie et
al., 2019), indicating that the optical properties of BrC could
be largely underestimated when using water as the extracting
solvent, as the non-polar fraction of BrC is also important to
light absorption of BrC (Sengupta et al., 2018). In Fig. S2
we summarized those previously reported Abs365,WSOC (as
Abs365,MSOC was not commonly measured in many previ-
ous studies) values at different sites in Asian urban and re-
mote areas and the US. Abs365,WSOC is significantly higher
in most Asian urban regions than in the Asian remote sites
and the US and shows clear seasonal variations. The high
light absorption of BrC in Asian urban regions, especially
during winter, may have important effects on regional cli-
mate and radiation forcing (Park et al., 2010; Laskin et al.,
2015). As discussed in Feng et al. (2013), the average global
climate forcing of BrC was estimated to be 0.04–0.11 W m−2

and above 0.25 W m−2 in urban sites of southern and eastern
Asia regions, which is about 25 % of the radiative forcing of
black carbon (BC; 1.07 W m−2). Thus, to further understand
the influence of BrC on regional radiation forcing, it is essen-
tial to identify and quantify the sources of BrC in Asia.

The seasonal averages of AAE of water-soluble BrC were
between 5.32 and 6.15, without a clear seasonal trend (see
Table S3). The seasonal averages of AAE of methanol-
soluble BrC were relatively lower than those of water-soluble
BrC, ranging from 4.45 to 5.18, which is similar to the results
in the Los Angeles Basin (Zhang et al., 2013) and Gwangju,
South Korea (Park et al., 2018). This is because methanol
can extract more conjugated compounds that absorb strongly
at longer wavelengths (e.g., PAHs; Samburova et al., 2016).
The AAE values of water-soluble BrC (as AAE of methanol-
soluble BrC was not commonly measured in many previous
studies) in urban, rural and remote regions show a large dif-
ference (see Fig. 2a), typically with much lower AAE values
in urban regions than those in rural and remote regions, in-
dicating the difference in sources and chemical composition
of chromophores. The urban regions are mainly affected by
anthropogenic emissions. Therefore, urban BrC may contain
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Figure 2. Comparison of AAE (a) and MAE365 (b) values of water-soluble BrC at remote sites (Srinivas and Sarin, 2013; Bosch et al., 2014;
Zhang et al., 2017b), rural sites (Hecobian et al., 2010; Kirillova et al., 2014a; Zhu et al., 2018; Xie et al., 2019) and urban sites (Kirillova et
al., 2014b; Yan et al., 2015; Chen et al., 2018; Huang et al., 2018; Park et al., 2018).

a large amount of aromatic chromophores with a high con-
jugation degree, which absorb light at a longer wavelength
and have lower AAE values (Lambe et al., 2013; Wang et al.,
2018).

The average MAE365 values of water- and methanol-
soluble BrC show large seasonal variations, with the highest
values in winter (1.85 and 1.50 m2 g C−1, respectively), fol-
lowed by fall (1.18 and 1.52 m2 g C−1, respectively), spring
(1.01 and 0.79 m2 g C−1, respectively) and summer (0.91 and
1.21 m2 g C−1, respectively). Such large seasonal differences
indicate seasonal differences in BrC sources. For example,
contributions from coal burning and biomass burning were
much larger in winter than in other seasons due to large resi-
dential heating activities (also see Sect. 3.3 for more details).
Compared to previous studies (Fig. 2b), the average values
of MAE365,WSOC are obviously higher in urban sites than
in rural and remote sites that are less influenced by anthro-
pogenic activities. The higher MAE365,WSOC values in urban

regions are likely associated with enhanced anthropogenic
emissions from, for example, coal combustion and biomass
burning, and the lower MAE365,WSOC values in rural and re-
mote regions could be attributed to biogenic sources or aged
secondary BrC (Lei et al., 2018; Xie et al., 2019).

3.2 Chemical characterization of the BrC
chromophores

Given the complexity in emission sources and formation
processes, the molecular composition of atmospheric BrC
remains largely unknown. PAHs, NACs and methoxyphe-
nols (MOPs) the silylation derivatization have recently been
found to be major chromophores in biomass-burning-derived
BrC (Lin et al., 2016, 2017, 2018). However, these com-
pounds can also be directly emitted by coal combustion and
motor vehicles or formed by secondary reactions (Harrison
et al., 2005; Iinuma et al., 2010; Liu et al., 2017; Wang et al.,
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Figure 3. Contributions of (a) PAH, (b) NAC and (c) MOP carbon mass concentrations to the total OC concentrations.

2018; Lu et al., 2019), making source attribution of atmo-
spheric BrC more challenging. To obtain the exact molec-
ular composition of BrC chromophores and understand the
influence of a specific chromophore on BrC optical property,
we measured the light absorption characteristics of available
chromophore standards, including 12 PAHs, 10 NACs and
3 MOPs, and quantified their concentrations in PM2.5 sam-
ples with GC–MS. The light absorption contribution of indi-
vidual chromophores to that of methanol-soluble BrC in the
wavelength range of 300–500 nm was estimated according to
its concentration and mass absorption efficiency (see Supple-
ment). Figure 3 shows the contribution of carbon content in
identified BrC chromophores to the total OC mass. They all
show obvious seasonal variations, with the highest values in
winter and lowest in summer. The seasonal difference can be
up to a factor of 5–6. The contribution of PAHs ranged from
0.12 % in summer to 0.47 % in winter, NACs from 0.02 % in
summer to 0.13 % in winter and MOPs from 0.01 % in sum-
mer to 0.06 % in winter. It should be noted that NACs are
dominated by 4-nitrophenol and 4-nitrocatechol in spring,
fall and winter but by 4-nitrophenol and 5-nitrosalicylic acid
in summer. The difference is likely due to enhanced sum-
mertime formation of 5-nitrosalicylic acid, which is more
oxidized than other nitrated phenols measured in this study
(Wang et al., 2018).

The seasonally averaged contributions of PAHs, NACs,
MOPs and total measured chromophores to light absorption
of methanol-soluble BrC between 300 and 500 nm are shown
in Fig. 4. They show large seasonal variations and wave-
length dependence. Specifically, PAHs made the largest con-
tribution to BrC light absorption in fall, followed by win-
ter, spring and summer, and show two large absorption peaks
at about 365 and 380 nm, which are mainly associated with
the absorption of BaP, BghiP, IcdP, FLU, BkF and BaA (see
Fig. S3). Compared to PAHs, NACs show the largest contri-
bution in winter, followed by fall, spring and summer, and
exhibit only one absorption peak at about 320 nm in spring
and summer and at about 330 nm in fall and winter. The
red shift in the absorption peak could be attributed to the
increase in contributions from 4-nitrocatechol, 4-methyl-5-
nitrocatechol and 3-methyl-5-nitrocatechol, which have an
absorption peak at about 330–350 nm (see Fig. S3). Differ-
ent from PAHs and NACs, MOPs contribute the most in win-
ter, followed by spring, fall and summer, and only show one
absorption peak at about 310 nm. The difference in light ab-
sorption contributions of different chromophores in different
seasons reflects the difference in sources, emission strength
and atmospheric formation processes.

The total contributions of PAHs, NACs and MOPs to
the light absorption of methanol-soluble BrC ranged from
0.47 % (summer) to 1.56 % (winter) at the wavelength of
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Figure 4.
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Figure 4. Light absorption contributions of (a) PAHs, (b) NACs, (c) MOPs and (d) total measured chromophores to AbsMSOC over the
wavelength range of 300 to 500 nm in spring, summer, fall and winter.
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Table 1. Annual and seasonal mean contributions of measured PAHs, NACs and MOPs to methanol-soluble BrC light absorption at 365 nm.
Hyphens denote the measured value of more than one-third of the samples being below the detection limit.

Compounds MAE365 Contribution to BrC light absorption at 365 nm (%)

(m2 g C−1) Annual Spring Summer Fall Winter

Fluoranthene (FLU) 4.25 0.11 0.05 0.02 0.05 0.15
Pyrene (PYR) 0.46 0.01 0.00 0.00 0.01 0.01
Chrysene (CHR) 0.00 0.00 0.00 0.00 0.00 0.00
Benzo(a)anthracene (BaA) 2.06 0.04 0.01 0.01 0.02 0.05
Benzo(a)pyrene (BaP) 9.31 1.04 0.76 0.39 1.16 1.10
Benzo(b)fluoranthene (BbF) 4.10 0.17 0.14 0.07 0.17 0.18
Benzo(k)fluoranthene (BkF) 3.47 0.04 0.03 0.02 0.04 0.04
Indeno[1,2,3-cd]pyrene (IcdP) 4.68 0.51 0.50 0.24 0.71 0.46
Benzo(ghi)perylene (BghiP) 8.95 0.29 0.28 0.16 0.41 0.26
9,10-Anthracenequinone (9,10AQ) 0.28 0.01 0.00 0.00 0.00 0.01
Benzanthrone (BEN) 6.13 0.11 0.08 0.05 0.11 0.12
Benzo[b]fluoren-11-one (BbF11O) 1.89 0.02 0.02 0.01 0.02 0.03
4-Nitrophenol (4NP) 2.17 0.08 0.06 0.02 0.05 0.10
4-Nitro-1-naphthol (4N1N) 9.71 – – – – 0.03
2-Methyl-4-nitrophenol (2M4NP) 2.81 0.03 0.01 0.01 0.01 0.04
3-Methyl-4-nitrophenol (3M4NP) 2.65 0.02 0.01 0.00 0.01 0.03
2,6-Dimethyl-4-nitrophenol (2,6DM4NP) 3.27 – – – – 0.01
4-Nitrocatechol (4NC) 7.91 0.27 0.05 0.03 0.20 0.35
3-Methyl-5-nitrocatechol (3M5NC) 5.77 – – – 0.05 0.11
4-Methyl-5-nitrocatechol (4M5NC) 7.29 – – – 0.06 0.13
3-Nitrosalicylic acid (3NSA) 3.86 – – – – 0.01
5-Nitrosalicylic acid (5NSA) 3.36 0.03 0.01 0.02 0.04 0.02
Syringyl acetone (SyA) 0.25 0.01 0.01 0.00 0.01 0.01
Vanillin (VAN) 8.17 0.01 0.00 0.00 0.00 0.01
Vanillic acid (VaA) 0.66 0.00 0.00 0.00 0.00 0.00

Total 103.46 2.80 2.02 1.05 3.13 3.26

300–500 nm and ranged from 1.05 % (summer) to 3.26 %
(winter) at the wavelength of 365 nm (see Table 1). The av-
erage contribution of PAHs to the BrC light absorption at
365 nm was 0.97 % in summer (the lowest) and 2.69 % in fall
(the highest), the contribution of NACs was 0.09 % in sum-
mer and 0.82 % in winter, and the contribution of MOPs was
0.006 % in summer and 0.024 % in winter. The low contri-
butions of these measured chromophores to the light absorp-
tion of methanol-soluble BrC are consistent with previous
studies. For example, Huang et al. (2018) measured 18 PAHs
and their derivatives, which on average contributed ∼ 1.7 %
of the overall absorption of methanol-soluble BrC in Xi’an.
Mohr et al. (2013) estimated the contribution of five NACs
to particulate BrC light absorption at 370 nm to be ∼ 4 %
in Detling, UK. Zhang et al. (2013) measured eight NACs,
which accounted for ∼ 4 % of water-soluble BrC absorption
at 365 nm in Los Angeles. Teich et al. (2017) determined
eight NACs during six campaigns at five locations in summer
and winter and found that the mean contribution of NACs to
water-soluble BrC absorption at 370 nm ranged from 0.10 %
to 1.25 % under acidic conditions and from 0.13 % to 3.71 %
under alkaline conditions. Slightly different from these previ-

ous studies, we investigated the contributions of three groups
of chromophores with different light-absorbing properties to
the light absorption of BrC and provided further understand-
ing of the relationships between optical properties and chem-
ical composition of BrC in the atmosphere. For example,
vanillin, which has negligible contribution to BrC light ab-
sorption at 365 nm, can produce secondary BrC through ox-
idation and thus enhance the light absorption by a factor of
5–7 (Li et al., 2014; Smith et al., 2016). The contribution
of PAHs to the light absorption of methanol-soluble BrC at
365 nm was 5–13 times that of their mass fraction of carbon
in OC, 6–9 times that for NACs and 0.4–0.7 times that for
MOPs (4–8 times at 310 nm for MOPs). These results fur-
ther demonstrate that even a small number of chromophores
can have a disproportionately high impact on the light ab-
sorption properties of BrC and that the light absorption of
BrC is likely determined by a number of chromophores with
strong light absorption ability (Kampf et al., 2012; Teich et
al., 2017). It may be noted that a large fraction of BrC chro-
mophores are still not identified so far, and more studies
are therefore necessary to better understand the BrC chem-
istry. Based on laboratory and ambient studies, imidazoles
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Figure 5. Contributions of the major sources to Abs365,MSOC in
Xi’an during spring, summer, fall and winter.

(Kampf et al., 2012; Teich et al., 2016), quinones (Lee et
al., 2014; Pillar and Guzman, 2017), nitrogenous PAHs (Lin
et al., 2016, 2018), polyphenols (Lin et al., 2016; Pillar et
al., 2017) and oligomers with higher conjugation (Lin et al.,
2014; Lavi et al., 2017) could be included in future studies.

3.3 Sources of BrC

Two approaches have been used to quantify the sources of
BrC, including multiple linear regression and receptor mod-
els such as PMF. For example, Washenfelder et al. (2015) uti-
lized multiple linear regression to determine the contribution
of individual OA factors resolved by PMF to OA light ab-
sorption in the southeastern US. Moschos et al. (2018) com-
bined the time series of PMF-resolved OA factors with the
time series of light absorption of water-soluble OA extract as
model inputs to quantify the sources of BrC in Magadino and
Zurich, Switzerland. Xie et al. (2019) quantified the sources
of BrC in southeastern America using Abs365, elemental car-
bon (EC), OC, WSOC, isoprene sulfate ester, monoterpene
sulfate ester, levoglucosan and isoprene SOA tracers as PMF
model inputs. However, it should be noted that previous stud-
ies mainly rely on the correlation between measured light
absorption and organic tracers that do not contain a BrC
chromophore and therefore may lead to bias in BrC source
apportionment. To better constrain the sources of BrC (i.e.,
contribution to Abs365,MSOC), we used BrC chromophores as
PMF model inputs. The inputs include vanillic acid, vanillin
and syringyl acetone for BrC from biomass burning; FLU,
PYR, CHR, BaA, BaP, BbF, BkF, IcdP and BghiP for BrC
from incomplete combustion; and other light-absorbing chro-
mophores, 9,10AQ, BEN and BbF11O. In addition, we in-
cluded commonly used markers levoglucosan for biomass
burning, phthalic acid for secondary BrC, hopanes for vehi-
cle emission and picene for coal burning in the model inputs.

Four factors were resolved, including vehicle emission,
coal burning, biomass burning and secondary formation. The

uncertainties for PMF analysis were < 10 % for secondary
formation and biomass burning and< 15 % for vehicle emis-
sion and coal burning. The profile of each factor is shown in
Fig. S4. The first factor is characterized by a high contribu-
tion of phthalic acid, a tracer of secondary formation of OA.
The second factor is dominated by hopanes, mainly from ve-
hicular emissions. The third factor is characterized by high
contributions of PI, BaP, BbF, BkF, IcdP and BghiP, mainly
from coal combustion emissions, while the fourth factor has
high contributions of levoglucosan, vanillic acid, vanillin and
syringyl acetone from biomass-burning emissions. The sea-
sonal difference in relative contribution of each factor to BrC
light absorption is shown in Fig. 5. In spring, vehicular emis-
sions (34 %) and secondary formation (37 %) were the main
contributors to BrC, and coal combustion also had a rela-
tively large contribution (29 %). In summer, secondary for-
mation constituted the largest fraction (∼ 60 %), mainly due
to enhanced photochemical formation of secondary BrC. In
fall, vehicular emissions (38 %), coal combustion (29 %) and
biomass burning (22 %) all had significant contributions to
BrC. In winter, coal combustion (44 %) and biomass burning
(36 %) were the main contributors due to emissions from res-
idential biomass burning (wood and crop residues) and coal
combustion for heating. In terms of absolute contributions to
absorption of MSOC at 365 nm (see Table S4), secondary
formation contributed 1.75, 2.55, 1.70 and 6.20 M m−1 in
spring, summer, fall and winter, respectively. The high con-
tribution in winter can be attributed to abundant precursors
(volatile organic compounds) co-emitted with other primary
sources (especially coal burning and biomass burning), while
the high contribution in summer might be due to strong pho-
tochemical activity. For spring and fall, the absolute contribu-
tions from secondary formation were very similar, indicating
moderate precursor emission and moderate photochemical
activity. Also it should be noted that the absolute contribu-
tions of vehicle emission to absorption of MSOC at 365 nm
were still higher in spring and fall than those in summer and
winter, yet these differences by a factor of 2–9 are still less
pronounced than the differences (spring and fall vs. winter)
for other primary emissions (> 40 times for coal burning and
> 25 times for biomass burning). In particular, the high ve-
hicle contribution in fall might be affected by high relative
humidity in fall (83 % in fall vs. 61 %–69 % in other sea-
sons, on average), resulting in high vehicular PM2.5 emis-
sions (Choi et al., 2010). Such large seasonal difference in
emission sources and atmospheric processes of BrC indicates
that more studies are required to better understand the rela-
tionship between chemical composition, formation processes
and light absorption properties of BrC.

4 Conclusion

The light absorption properties of water- and methanol-
soluble BrC in different seasons were investigated in Xi’an.
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The light absorption coefficient of methanol-soluble BrC
was approximately 2 times higher than that of water-soluble
BrC at 365 nm and had an average MAE365 value of 1.27±
0.46 m2 g C−1. The average MAE365 value of water-soluble
BrC was 1.19±0.51 m2 g C−1, which is comparable to those
in previous studies at urban sites but higher than those in ru-
ral and remote areas. The seasonally averaged AAE values
of water-soluble BrC ranged from 5.32 to 6.15, which are
higher than those of methanol-soluble BrC (between 4.45
and 5.18). In combination with previous studies, we found
that AAE values of water-soluble BrC were much lower in
urban regions than those in rural and remote regions. The
difference of optical properties of BrC in different regions
could be attributed to the difference in sources and chem-
ical composition of BrC chromophores. The contributions
of 12 PAHs, 10 NACs and 3 MOPs to the light absorp-
tion of methanol-soluble BrC were determined and showed
large seasonal variations. Specifically, the total contribution
to methanol-soluble BrC light absorption at 365 nm ranged
from 1.1 % to 3.3 %, which is 5–7 times higher than their car-
bon mass fractions in total OC. This result indicates that the
light absorption of BrC is likely determined by an amount
of chromophores with strong light absorption ability. Four
major sources of methanol-soluble BrC were identified, in-
cluding secondary formation, vehicle emission, coal combus-
tion and biomass burning. On average, secondary formation
and vehicular emission were the main contributors of BrC
in spring (∼ 70 %). Vehicular emission (38 %), coal burning
(29 %) and biomass burning (22 %) all contributed signifi-
cantly to BrC in fall. Coal combustion and biomass burn-
ing were the major contributors in winter (∼ 80 %), and sec-
ondary formation was the predominant source in summer
(∼ 60 %). The large variations in BrC sources in different
seasons suggest that more studies are needed to understand
the seasonal difference in chemical composition, formation
processes and light absorption properties of BrC as well as
their relationships.
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Appendix A: Abbreviations of organics

PAHs (polycyclic aromatic hydrocarbons)
BaA Benzo(a)anthracene
BaP Benzo(a)pyrene
BbF Benzo(b)fluoranthene
BbF11O Benzo[b]fluoren-11-one
BEN Benzanthrone
BghiP Benzo(ghi)perylene
BkF Benzo(k)fluoranthene
CHR Chrysene
FLU Fluoranthene
IcdP Indeno[1,2,3-cd]pyrene
PYR Pyrene
9,10AQ 9,10-Anthracenequinone
NACs (nitrated aromatic compounds)
2M4NP 2-Methyl-4-nitrophenol
2,6DM4NP 2,6-Dimethyl-4-nitrophenol
3M4NP 3-Methyl-4-nitrophenol
3M5NC 3-Methyl-5-nitrocatechol
3NSA 3-Nitrosalicylic acid
4M5NC 4-Methyl-5-nitrocatechol
4NC 4-Nitrocatechol
4NP 4-Nitrophenol
4N1N 4-Nitro-1-naphthol
5NSA 5-Nitrosalicylic acid
MOP (methoxyphenols)
SyA Syringyl acetone
VaA Vanillic acid
VAN Vanillin
Hopanes
HP1 17α(H),21β(H)-30-norhopane
HP2 17α(H),21β(H)-hopane
HP3 17α(H),21β(H)-(22S)-homohopane
HP4 17α(H),21β(H)-(22R)-homohopane
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