Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14769–14785, 2020
https://doi.org/10.5194/acp-20-14769-2020
Atmos. Chem. Phys., 20, 14769–14785, 2020
https://doi.org/10.5194/acp-20-14769-2020

Measurement report 02 Dec 2020

Measurement report | 02 Dec 2020

Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air

Caihong Wu et al.

Related authors

Chemical characterization of oxygenated organic compounds in gas-phase and particle-phase using iodide-CIMS with FIGAERO in urban air
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1187,https://doi.org/10.5194/acp-2020-1187, 2020
Revised manuscript accepted for ACP
Short summary
Measurements of higher alkanes using NO+ chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020,https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues
Max Thomas, Johannes C. Laube, Jan Kaiser, Samuel Allin, Patricia Martinerie, Robert Mulvaney, Anna Ridley, Thomas Röckmann, William T. Sturges, and Emmanuel Witrant
Atmos. Chem. Phys., 21, 6857–6873, https://doi.org/10.5194/acp-21-6857-2021,https://doi.org/10.5194/acp-21-6857-2021, 2021
Short summary
Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021,https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021,https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS – a case study in a suburban forest of the Seoul metropolitan area during the Korea–United States Air Quality Study (KORUS-AQ) 2016
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021,https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021,https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary

Cited articles

Apel, E. C., Riemer, D. D., Hills, A., Baugh, W., Orlando, J., Faloona, I., Tan, D., Brune, W., Lamb, B., Westberg, H., Carroll, M. A., Thornberry, T., and Geron, C. D.: Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive, J. Geophys. Res.-Atmos., 107, ACH 7-1–ACH 7-15, https://doi.org/10.1029/2000jd000225, 2002. 
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 
Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P., Soukoulis, C., Aprea, E., Märk, T., Gasperi, F., and Biasioli, F.: On Quantitative Determination of Volatile Organic Compound Concentrations Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry, Environ. Sci. Tech., 46, 2283–2290, https://doi.org/10.1021/es203985t, 2012. 
Download
Short summary
Based on measurements from an online mass spectrometer, we quantify volatile organic compound (VOC) concentrations from numerous ions of the mass spectrometer, using information from laboratory-obtained calibration results. We find that most VOC concentrations are from oxygenated VOCs (OVOCs). We further show that these OVOCs also contribute significantly to OH reactivity. Our results suggest the important role of OVOCs in VOC emissions and chemistry in urban air.
Altmetrics
Final-revised paper
Preprint