Articles | Volume 19, issue 10
https://doi.org/10.5194/acp-19-7183-2019
https://doi.org/10.5194/acp-19-7183-2019
Research article
 | 
29 May 2019
Research article |  | 29 May 2019

Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products

Jing Wei, Yiran Peng, Rashed Mahmood, Lin Sun, and Jianping Guo

Related authors

LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024,https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-860,https://doi.org/10.5194/egusphere-2024-860, 2024
Short summary
iPyCLES v1.0: A New Isotope-Enabled Large-Eddy Simulator for Mixed-Phase Clouds
Zizhan Hu, Yiran Peng, Mengke Zhu, and Jonathon S. Wright
EGUsphere, https://doi.org/10.5194/egusphere-2024-828,https://doi.org/10.5194/egusphere-2024-828, 2024
Short summary
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024,https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Revisiting the evolution of downhill thunderstorms over Beijing: A new perspective from radar wind profiler mesonet
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-707,https://doi.org/10.5194/egusphere-2024-707, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024,https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024,https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024,https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024,https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024,https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary

Cited articles

Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease, Environ. Health Persp., 121, 1135–1141, 2013. 
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. B Met., 57, 289–300, 1995. 
Bevan, S., North, P., Los, S., and Grey, W.: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR, Remote Sens. Environ, 116, 199–210, 2012. 
Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S., Krzyzanowski, M., Martin, R., Van Dingenen, R., van Donkelaar, A., and Thurston, G.: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environ. Sci. Technol., 46, 652–660, 2012. 
Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility impairment in Xi'an, China, Atmos. Environ., 59, 559–566, 2012. 
Download
Short summary
This study evaluates the suitability of 11 satellite-derived aerosol products in describing the spatio-temporal variations over the world. Our results show similar global patterns among these products but noticeable spatial heterogeneity and numerical differences over land regions. In general, MODIS products perform best at reflecting the spatial distributions and capturing the temporal trends of aerosol. This study help readers select a suitable aerosol dataset for their studies.
Altmetrics
Final-revised paper
Preprint