Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 17, issue 9
Atmos. Chem. Phys., 17, 5665–5675, 2017
https://doi.org/10.5194/acp-17-5665-2017
Atmos. Chem. Phys., 17, 5665–5675, 2017
https://doi.org/10.5194/acp-17-5665-2017

Research article 05 May 2017

Research article | 05 May 2017

The constraint of CO2 measurements made onboard passenger aircraft on surface–atmosphere fluxes: the impact of transport model errors in vertical mixing

Shreeya Verma et al.

Related authors

Extending methane profiles from aircraft into the stratosphere for satellite total column validation using the ECMWF C-IFS and TOMCAT/SLIMCAT 3-D model
Shreeya Verma, Julia Marshall, Mark Parrington, Anna Agustí-Panareda, Sebastien Massart, Martyn P. Chipperfield, Christopher Wilson, and Christoph Gerbig
Atmos. Chem. Phys., 17, 6663–6678, https://doi.org/10.5194/acp-17-6663-2017,https://doi.org/10.5194/acp-17-6663-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020,https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020,https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020,https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary
A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020,https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary

Cited articles

Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, Biogeosciences, 6, 807–817, https://doi.org/10.5194/bg-6-807-2009, 2009.
Boschetti, F., Chen, H., Thouret, V., Nedelec, P., Janssens-Maenhout, G., and Gerbig, C.: On the representation of IAGOS/MOZAIC vertical profiles in chemical transport models: contribution of different error sources in the example of carbon monoxide, Tellus B, 67, 28292, https://doi.org/10.3402/tellusb.v67.28292, 2015.
Checa-Garcia, R., Landgraf, J., Galli, A., Hase, F., Velazco, V. A., Tran, H., Boudon, V., Alkemade, F., and Butz, A.: Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor, Atmos. Meas. Tech., 8, 3617–3629, https://doi.org/10.5194/amt-8-3617-2015, 2015.
Deng, F., Jones, D. B. A., Walker, T. W., Keller, M., Bowman, K. W., Henze, D. K., Nassar, R., Kort, E. A., Wofsy, S. C., Walker, K. A., Bourassa, A. E., and Degenstein, D. A.: Sensitivity analysis of the potential impact of discrepancies in stratosphere–troposphere exchange on inferred sources and sinks of CO2, Atmos. Chem. Phys., 15, 11773–11788, https://doi.org/10.5194/acp-15-11773-2015, 2015.
Publications Copernicus
Download
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Citation
Altmetrics
Final-revised paper
Preprint