Articles | Volume 16, issue 20
Atmos. Chem. Phys., 16, 13035–13047, 2016
https://doi.org/10.5194/acp-16-13035-2016
Atmos. Chem. Phys., 16, 13035–13047, 2016
https://doi.org/10.5194/acp-16-13035-2016
Research article
21 Oct 2016
Research article | 21 Oct 2016

The effect of viscosity and diffusion on the HO2 uptake by sucrose and secondary organic aerosol particles

Pascale S. J. Lakey et al.

Related authors

Hydroxyl radicals from secondary organic aerosol decomposition in water
Haijie Tong, Andrea M. Arangio, Pascale S. J. Lakey, Thomas Berkemeier, Fobang Liu, Christopher J. Kampf, William H. Brune, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 1761–1771, https://doi.org/10.5194/acp-16-1761-2016,https://doi.org/10.5194/acp-16-1761-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Magnetic fraction of the atmospheric dust in Kraków – physicochemical characteristics and possible environmental impact
Jan M. Michalik, Wanda Wilczyńska-Michalik, Łukasz Gondek, Waldemar Tokarz, Jan Żukrowski, Marta Gajewska, and Marek Michalik
Atmos. Chem. Phys., 23, 1449–1464, https://doi.org/10.5194/acp-23-1449-2023,https://doi.org/10.5194/acp-23-1449-2023, 2023
Short summary
Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 23, 1209–1226, https://doi.org/10.5194/acp-23-1209-2023,https://doi.org/10.5194/acp-23-1209-2023, 2023
Short summary
SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023,https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Isothermal evaporation of α-pinene secondary organic aerosol particles formed under low NOx and high NOx conditions
Zijun Li, Angela Buchholz, Luis M. F. Barreira, Arttu Ylisirniö, Liqing Hao, Iida Pullinen, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 23, 203–220, https://doi.org/10.5194/acp-23-203-2023,https://doi.org/10.5194/acp-23-203-2023, 2023
Short summary
Chemical characterization of organic compounds involved in iodine-initiated new particle formation from coastal macroalgal emission
Yibei Wan, Xiangpeng Huang, Chong Xing, Qiongqiong Wang, Xinlei Ge, and Huan Yu
Atmos. Chem. Phys., 22, 15413–15423, https://doi.org/10.5194/acp-22-15413-2022,https://doi.org/10.5194/acp-22-15413-2022, 2022
Short summary

Cited articles

Ammann, M.: Using 13N as tracer in heterogeneous atmospheric chemistry experiments, Radiochim. Acta, 89, 831–838, 2001.
Arens, F., Gutzwiller, L., Baltensperger, U., Gäggeler, H. W., and Ammann, M.: Heterogeneous reaction of NO2 on diesel soot particles, Environ. Sci. Technol., 35, 2191–2199, 2001.
Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate, J. Phys. Chem. A, 110, 6986–6994, https://doi.org/10.1021/jp0562678, 2006.
Bedjanian, Y., Romanias, M. N., and El Zein, A.: Uptake of HO2 radicals on Arizona Test Dust, Atmos. Chem. Phys., 13, 6461–6471, https://doi.org/10.5194/acp-13-6461-2013, 2013.
Behr, P., Scharfenort, U., Ataya, K., and Zellner, R.: Dynamics and mass accommodation of HCl molecules on sulfuric acid–water surfaces, Phys. Chem. Chem. Phys., 11, 8048–8055, 2009.