Articles | Volume 15, issue 8
Atmos. Chem. Phys., 15, 4093–4116, 2015
https://doi.org/10.5194/acp-15-4093-2015
Atmos. Chem. Phys., 15, 4093–4116, 2015
https://doi.org/10.5194/acp-15-4093-2015

Research article 21 Apr 2015

Research article | 21 Apr 2015

Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

J. M. Henderson et al.

Related authors

Boreal forest fire CO and CH4 emission factors derived from tower observations in Alaska during the extreme fire season of 2015
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021,https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018,https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016,https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
A regional CO2 observing system simulation experiment for the ASCENDS satellite mission
J. S. Wang, S. R. Kawa, J. Eluszkiewicz, D. F. Baker, M. Mountain, J. Henderson, T. Nehrkorn, and T. S. Zaccheo
Atmos. Chem. Phys., 14, 12897–12914, https://doi.org/10.5194/acp-14-12897-2014,https://doi.org/10.5194/acp-14-12897-2014, 2014
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021,https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021,https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021,https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Convective self–aggregation in a mean flow
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021,https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary

Cited articles

ACIA: Impacts of a Warming Arctic: Arctic Climate Impact Assessment, Tech. rep., Arctic Council, 140 pp., available at: http://www.amap.no/documents/download/1058/ Impacts-of-a-Warming-Arctic (last access: 15 August 2014), 2004.
Barnes, E. A.: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50880, 2013.
Bellinger, T. E.: Evaluating the wind data from the automated surface observing system in Oak Ridge, Tennessee Is KOQT the calmest site in the US?, in: Nuclear Utility Meteorological Data Users Group Meeting, Nuclear Utility Meteorological Data Users Group, Oak Brook, IL, available at: http://www.ornl.gov/das/web/KOQTCalm.pdf (last access: 14 August 2014), 2011.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st cen- tury: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.
Brioude, J., Angevine, W. M., McKeen, S. A., and Hsie, E.-Y.: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain, Geosci. Model Dev., 5, 1127–1136, https://doi.org/10.5194/gmd-5-1127-2012, 2012.
Download
Short summary
This paper describes the atmospheric modeling that underlies the science analysis for the NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Summary statistics of the WRF meteorological model performance on a 3.3 km grid indicate good overall agreement with surface and radiosonde observations. The high quality of the WRF meteorological fields inspires confidence in their use to drive the STILT transport model for the purpose of computing surface influence fields (“footprints”).
Altmetrics
Final-revised paper
Preprint