the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions
Zhiyuan Hu
Chun Zhao
Yuanyuan Ma
Qinjian Jin
Yun Qian
L. Ruby Leung
Jianrong Bi
Jianmin Ma
Related authors
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Exascale Earth System Model (E3SMv2) to document model performance and understand what updates in E3SMv2 have caused changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved, primarily due to the retuning done in CLUBB. This study offers additional insights into clouds simulated in E3SMv2 and will benefit future E3SM developments.
Related subject area
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.