Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 15, issue 6
Atmos. Chem. Phys., 15, 3479–3495, 2015
https://doi.org/10.5194/acp-15-3479-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 3479–3495, 2015
https://doi.org/10.5194/acp-15-3479-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Mar 2015

Research article | 31 Mar 2015

Step changes in persistent organic pollutants over the Arctic and their implications

Y. Zhao, T. Huang, L. Wang, H. Gao, and J. Ma Y. Zhao et al.
  • Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China

Abstract. While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase during the 2000s, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on the long-term trend of POPs in the Arctic, step change points in the time series of ambient POP atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POP data varied in different years and at different sites. Most step change points were found in 2001–2002 and 2007–2008. In particular, the step change points of many PCBs for 2007–2008 were coincident with the lowest arctic sea ice concentration occurring during the 2000s. The perturbations of air concentration and water–air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POP mass balance perturbation model, switched from negative to positive during the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice–air exchange flux of PCB 28 and 153 showed an increasing trend and a negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice–air exchange flux of α-hexachlorocyclohexane decreased over the period of 1995 to 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.

Publications Copernicus
Download
Short summary
After several decades of declining persistent organic pollutants in the arctic environment due to their global use restriction, some of these toxic chemicals increased in the mid-2000s and undertook statistically significant step changes which coincided with arctic sea ice melting. Results provide statistical evidence for the releasing of toxic chemicals from their reservoirs in the Arctic due to the rapid change in the arctic environment.
After several decades of declining persistent organic pollutants in the arctic environment due...
Citation
Altmetrics
Final-revised paper
Preprint