Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 12
Atmos. Chem. Phys., 16, 7773–7783, 2016
https://doi.org/10.5194/acp-16-7773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 7773–7783, 2016
https://doi.org/10.5194/acp-16-7773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Jun 2016

Research article | 24 Jun 2016

Taklimakan Desert nocturnal low-level jet: climatology and dust activity

Jin Ming Ge1, Huayue Liu1,2, Jianping Huang1, and Qiang Fu1,3 Jin Ming Ge et al.
  • 1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
  • 2Hebei Province Meteorological Service Center, Shijiazhuang, 005021, China
  • 3Department of Atmospheric Sciences, University of Washington, Seattle, WA 98105, USA

Abstract. While nocturnal low-level jets (NLLJs) occur frequently in many parts of the world, the occurrence and other detailed characteristics of NLLJs over the Taklimakan Desert (TD) are not well known. This paper presents a climatology of NLLJs and coincident dust over the TD by analyzing multi-year ERA-Interim reanalysis and satellite observations. It is found that the ERA-Interim dataset can capture the NLLJs' features well by comparison with radiosonde data from two surface sites. The NLLJs occur in more than 60 % of nights, which are primarily easterly to east-northeasterly. They typically appear at 100 to 400 m above the surface with a speed of 4 to 10 m s−1. Most NLLJs are located above the nocturnal inversion during the warm season, while they are embedded in the inversion layer during the cold season. NLLJs above the inversion have a strong annual cycle with a maximum frequency in August. We also quantify the convective boundary layer (CBL) height and construct an index to measure the magnitude of the momentum in the CBL. We find that the magnitude of momentum in the lower atmosphere from the top of the surface layer to the top of mixed layer is larger for NLLJ cases than for non-NLLJ cases, and in the warm season the downward momentum transfer process is more intense and rapid. The winds below the NLLJ core to the desert surface gain strength in summer and autumn, and these summer and autumn winds are coincident with an enhancement of aerosol optical depth. This indicates that the NLLJ is an important mechanism for dust activity and transport during the warm season over the Taklimakan.

Publications Copernicus
Download
Short summary
Nocturnal low-level jet (NLLJ), which refers to a narrow zone of strong winds, occurs frequently over the Taklimakan Desert. It is found that the NLLJ contains more momentum than without NLLJ, and the downward momentum transfer process is more intense and rapid in the warm season. The coincidence of the larger surface winds during NLLJ days with an enhancement of aerosol optical depth indicates that the NLLJ is an important mechanism for dust emission and transport over this region.
Nocturnal low-level jet (NLLJ), which refers to a narrow zone of strong winds, occurs frequently...
Citation
Altmetrics
Final-revised paper
Preprint