Articles | Volume 16, issue 12
https://doi.org/10.5194/acp-16-7773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-7773-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Taklimakan Desert nocturnal low-level jet: climatology and dust activity
Jin Ming Ge
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
Huayue Liu
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
Hebei Province Meteorological Service Center, Shijiazhuang, 005021, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
Qiang Fu
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
Department of Atmospheric Sciences, University of Washington, Seattle, WA 98105, USA
Related authors
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021, https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.
Jinming Ge, Zeen Zhu, Chuang Zheng, Hailing Xie, Tian Zhou, Jianping Huang, and Qiang Fu
Atmos. Chem. Phys., 17, 9035–9047, https://doi.org/10.5194/acp-17-9035-2017, https://doi.org/10.5194/acp-17-9035-2017, 2017
Short summary
Short summary
A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Short summary
This study deployed an AMS field study in Lanzhou, a city in northwestern China, evaluating the chemical composition, sources, and processes of urban aerosols during wintertime. In comparison with the results during summer in Lanzhou, the air pollution during winter was more severe and the sources were more complex. In addition, this paper estimates the contributions of fossil and non-fossil sources of organic carbon to primary and secondary organic carbon using the carbon isotopic method.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021, https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Qinjian Jin, Yuanyuan Ma, and Ben Yang
Atmos. Chem. Phys., 20, 1507–1529, https://doi.org/10.5194/acp-20-1507-2020, https://doi.org/10.5194/acp-20-1507-2020, 2020
Short summary
Short summary
This study investigates intercontinental transport of dust plums and distribution characteristics of dust at different altitudes over the Tibetan Plateau (TP). The results show that dust particles are emitted into atmosphere and then transport to the TP. The East Asian dust trasnports southward and is lifted up to the TP in northern slop, while the North Afican dust and Middle East dust transport eastward and concentrate in both northern and southern slops, then is lifted up to the TP.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019, https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Short summary
This study investigates aerosol chemical compositions and relative contributions to total aerosols in the western US. The results show that trans-Pacific aerosols have a maximum concentration in the boreal spring, with the greatest contribution from dust. Over western North America, the trans-Pacific aerosols dominate the column-integrated aerosol mass and number concentration. However, near the surface, aerosols mainly originated from local emissions.
Xiaoyue Liu, Jianping Huang, Jiping Huang, Changyu Li, and Lei Ding
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-36, https://doi.org/10.5194/essd-2019-36, 2019
Revised manuscript not accepted
Short summary
Short summary
Atmospheric oxygen is crucial to life on earth. In this paper, we quantify oxygen consumption and production processes under the impact of human activities to build a dynamic global oxygen budget on a grid scale. Our result shows that the oxygen consumption related to human activities has risen significantly in recent decades while the oxygen production only displays a faint increase. Regionally, boreal forest and Tibetan plateau become the most important sources of atmospheric oxygen.
Jiming Li, Qiaoyi Lv, Bida Jian, Min Zhang, Chuanfeng Zhao, Qiang Fu, Kazuaki Kawamoto, and Hua Zhang
Atmos. Chem. Phys., 18, 7329–7343, https://doi.org/10.5194/acp-18-7329-2018, https://doi.org/10.5194/acp-18-7329-2018, 2018
Short summary
Short summary
The accurate representation of cloud vertical overlap in atmospheric models is very important for predicting the total cloud cover and calculating the radiative budget. We propose a valid scheme for quantifying the degree of overlap over the Tibetan Plateau (TP). The new scheme parameterizes decorrelation length scale L as a function of wind shear and atmospheric stability and improves the simulation of total cloud cover over TP when the separations between cloud layers are greater than 1 km.
Kai Tang, Zhongwei Huang, Jianping Huang, Teruya Maki, Shuang Zhang, Atsushi Shimizu, Xiaojun Ma, Jinsen Shi, Jianrong Bi, Tian Zhou, Guoyin Wang, and Lei Zhang
Atmos. Chem. Phys., 18, 7131–7148, https://doi.org/10.5194/acp-18-7131-2018, https://doi.org/10.5194/acp-18-7131-2018, 2018
Short summary
Short summary
To our knowledge, this is the first simultaneous field measurement of bioaerosols in dust events at four sites along the transport pathway of Asian dust. The samples were analyzed by means of fluorescence microscopy, scanning electron microscopy, and MiSeq sequencing analysis. The results indicate that dust clouds can carry many bacteria of various types into downwind regions, the alpha and beta diversity of which were investigated.
Zhijuan Zhang, Bin Chen, Jianping Huang, Jingjing Liu, Jianrong Bi, Tian Zhou, and Zhongwei Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1000, https://doi.org/10.5194/acp-2017-1000, 2017
Revised manuscript not accepted
Short summary
Short summary
Environmental problems caused by aerosols such as dust aerosols are influencing people's lives and work. Due to different radiative effects of different types of aerosols, detection of the aerosol type is vital for improving our air quality. In this study, the optical properties of pure dust and transported anthropogenic dust are compared by using ground-based Lidar data. Based on our conclusion, detection of different dust aerosols will be more accurate using satellite-based Lidar.
Siyu Chen, Jianping Huang, Nanxuan Jiang, Zhou Zang, Xiaodan Guan, Xiaojun Ma, Zhuo Jia, Xiaorui Zhang, Yanting Zhang, Kangning Huang, Xiaocong Xu, Guolong Zhang, Jiming Li, Ran Yang, and Shujie Liao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-890, https://doi.org/10.5194/acp-2017-890, 2017
Revised manuscript not accepted
Jinming Ge, Zeen Zhu, Chuang Zheng, Hailing Xie, Tian Zhou, Jianping Huang, and Qiang Fu
Atmos. Chem. Phys., 17, 9035–9047, https://doi.org/10.5194/acp-17-9035-2017, https://doi.org/10.5194/acp-17-9035-2017, 2017
Short summary
Short summary
A modified method with a new noise reduction scheme that can reduce the noise distribution to a narrow range is proposed to distinguish clouds and other hydrometeors from noise and recognize more features with weak signal in cloud radar observations. It was found that our method has significant advantages in reducing the rates of both failed negative and false positive hydrometeor identifications in simulated clouds and recognizing clouds with weak signal from our cloud radar observations.
Jianrong Bi, Jianping Huang, Jinsen Shi, Zhiyuan Hu, Tian Zhou, Guolong Zhang, Zhongwei Huang, Xin Wang, and Hongchun Jin
Atmos. Chem. Phys., 17, 7775–7792, https://doi.org/10.5194/acp-17-7775-2017, https://doi.org/10.5194/acp-17-7775-2017, 2017
Short summary
Short summary
We conducted a field campaign on exploring dust aerosol in Dunhuang farmland nearby Gobi deserts. The anthropogenic dust produced by agricultural cultivations exerted a significant superimposed effect on elevated dust loadings. Strong south wind in daytime scavenged the pollution and weak northeast wind at night favorably accumulated air pollutants near the surface. The local emissions remarkably modified the absorptive and optical characteristics of mineral dust in desert source region.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Siyu Chen, Jianping Huang, Litai Kang, Hao Wang, Xiaojun Ma, Yongli He, Tiangang Yuan, Ben Yang, Zhongwei Huang, and Guolong Zhang
Atmos. Chem. Phys., 17, 2401–2421, https://doi.org/10.5194/acp-17-2401-2017, https://doi.org/10.5194/acp-17-2401-2017, 2017
Short summary
Short summary
Compared with the TD dust, the importance of the GD dust in eastern China, Japan, and Korea is always neglected. We focused primarily on the dynamic and thermodynamics mechanisms of dust emission and transport over TD and GD and further elucidate the influence of TD and GD dust on the entire East Asia based on a case study using WRF-Chem model in the study.
Jianrong Bi, Jianping Huang, Brent Holben, and Guolong Zhang
Atmos. Chem. Phys., 16, 15501–15516, https://doi.org/10.5194/acp-16-15501-2016, https://doi.org/10.5194/acp-16-15501-2016, 2016
Short summary
Short summary
Dating absorptive capacity of Asian dust is still an outstanding issue. In this study, we identify two types of Asian dust: Pure Dust (PDU) and Transported Anthropogenic Dust (TDU). Overall average SSA, ASY, Re, and Ri at 550 nm for PDU are 0.935, 0.742, 1.526, and 0.00226, respectively, with 0.921, 0.723, 1.521, and 0.00364 for TDU. Our results promise to update and improve accuracy of Asian dust characteristics in present-day remote sensing applications and regional climate models.
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Short summary
This study deployed an AMS field study in Lanzhou, a city in northwestern China, evaluating the chemical composition, sources, and processes of urban aerosols during wintertime. In comparison with the results during summer in Lanzhou, the air pollution during winter was more severe and the sources were more complex. In addition, this paper estimates the contributions of fossil and non-fossil sources of organic carbon to primary and secondary organic carbon using the carbon isotopic method.
Zhiyuan Hu, Chun Zhao, Jianping Huang, L. Ruby Leung, Yun Qian, Hongbin Yu, Lei Huang, and Olga V. Kalashnikova
Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, https://doi.org/10.5194/gmd-9-1725-2016, 2016
Short summary
Short summary
This study conducts the simulation of WRF-Chem with the quasi-global configuration for 2010–2014, and evaluates the simulation with multiple observation datasets for the first time. This study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA to further understand the impact of transported pollutants on the regional air quality and climate.
Xiaodan Guan, Jianping Huang, Yanting Zhang, Yongkun Xie, and Jingjing Liu
Atmos. Chem. Phys., 16, 5159–5169, https://doi.org/10.5194/acp-16-5159-2016, https://doi.org/10.5194/acp-16-5159-2016, 2016
Short summary
Short summary
An obvious peak in the total anthropogenic dust column, with much higher magnitude than those of wet regions, was observed in semi-arid regions. The anthropogenic dust column burden of semi-arid takes a positively correlated with the population and population change, indicating the production of anthropogenic dust in semi-arid regions is partly induced by human activities.
X. Guan, J. Huang, R. Guo, H. Yu, P. Lin, and Y. Zhang
Atmos. Chem. Phys., 15, 13777–13786, https://doi.org/10.5194/acp-15-13777-2015, https://doi.org/10.5194/acp-15-13777-2015, 2015
Short summary
Short summary
Dynamical adjustment methodology has been applied to the raw surface air temperature and has successfully identified and separated the contribution of dynamically induced temperature (DIT) and radiatively forced temperature (RFT). It found that regional anthropogenic radiative forcing caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities.
R. Zhang, H. Wang, D. A. Hegg, Y. Qian, S. J. Doherty, C. Dang, P.-L. Ma, P. J. Rasch, and Q. Fu
Atmos. Chem. Phys., 15, 12805–12822, https://doi.org/10.5194/acp-15-12805-2015, https://doi.org/10.5194/acp-15-12805-2015, 2015
Short summary
Short summary
We use a global climate model with an explicit source tagging technique to quantify contributions of emissions from various geographical regions and sectors to BC in North America. Model results are evaluated against measurements of near-surface and in-snow BC. We found strong spatial variations of BC and its radiative forcing that can be quantitatively attributed to the various source origins, and also identified a significant source of BC in snow that is likely missing in most climate models.
Y. Liu, Y. Sato, R. Jia, Y. Xie, J. Huang, and T. Nakajima
Atmos. Chem. Phys., 15, 12581–12594, https://doi.org/10.5194/acp-15-12581-2015, https://doi.org/10.5194/acp-15-12581-2015, 2015
Short summary
Short summary
We firstly evaluated the Spectral Radiation-Transport Model for Aerosol Species combined with a non-hydrostatic regional model through comparing the simulation results and satellite observations, both in horizontal and vertical. The dust and anthropogenic aerosols in summer over the Tibetan Plateau are evaluated, and their distributions over the TP are presented. The transport of these aerosols over the Tibetan Plateau is also explored via combining the simulation results and reanalysis data.
W. Sun, R. R. Baize, G. Videen, Y. Hu, and Q. Fu
Atmos. Chem. Phys., 15, 11909–11918, https://doi.org/10.5194/acp-15-11909-2015, https://doi.org/10.5194/acp-15-11909-2015, 2015
Short summary
Short summary
A method is reported for retrieving super-thin cloud optical depth with polarized light. It is found that near-backscatter p-polarized light is sensitive to clouds, but not to ocean conditions. Near-backscatter p-polarized intensity linearly relates to super-thin cloud optical depth. Based on these findings, super-thin cloud optical depth can be retrieved with little effect from surface reflection.
J. P. Huang, J. J. Liu, B. Chen, and S. L. Nasiri
Atmos. Chem. Phys., 15, 11653–11665, https://doi.org/10.5194/acp-15-11653-2015, https://doi.org/10.5194/acp-15-11653-2015, 2015
Short summary
Short summary
To understand the contribution of anthropogenic dust to the total global dust load, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using CALIPSO dust measurements and PBL height retrievals along with a land use data set. Results reveal that local anthropogenic dust aerosol accounts for about 25% of the global continental dust load.
Q. Jin, J. Wei, Z.-L. Yang, B. Pu, and J. Huang
Atmos. Chem. Phys., 15, 9897–9915, https://doi.org/10.5194/acp-15-9897-2015, https://doi.org/10.5194/acp-15-9897-2015, 2015
Short summary
Short summary
Satellite data show that Indian summer monsoon (ISM) rainfall is closely associated with Middle East dust aerosols. Numerical modeling shows that the increased ISM rainfall is related to the enhanced southwesterly flow and moisture transport from the Arabian Sea to the Indian subcontinent, associated with the development of an anomalous low-pressure system over the Iranian Plateau and the Arabian Sea due to dust-induced atmospheric heating.
R. Zhang, H. Wang, Y. Qian, P. J. Rasch, R. C. Easter, P.-L. Ma, B. Singh, J. Huang, and Q. Fu
Atmos. Chem. Phys., 15, 6205–6223, https://doi.org/10.5194/acp-15-6205-2015, https://doi.org/10.5194/acp-15-6205-2015, 2015
Short summary
Short summary
We use the CAM5 model with a novel source-tagging technique to characterize the fate of BC particles emitted from various geographical regions and sectors and their transport pathways to the Himalayas and Tibetan Plateau (HTP). We show a comprehensive picture of the seasonal and regional dependence of BC source attributions, and find strong seasonal and spatial variations in BC-in-snow radiative forcing in the HTP that can be quantitatively attributed to the various regional/sectoral sources.
J. Li, J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin
Atmos. Chem. Phys., 15, 519–536, https://doi.org/10.5194/acp-15-519-2015, https://doi.org/10.5194/acp-15-519-2015, 2015
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
Hongru Yan, Zhanqing Li, Jianping Huang, Maureen Cribb, and Jianjun Liu
Atmos. Chem. Phys., 14, 7113–7124, https://doi.org/10.5194/acp-14-7113-2014, https://doi.org/10.5194/acp-14-7113-2014, 2014
C. Zhao, S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang
Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, https://doi.org/10.5194/acp-13-10733-2013, 2013
S. Feng and Q. Fu
Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, https://doi.org/10.5194/acp-13-10081-2013, 2013
R. Zhang, D. A. Hegg, J. Huang, and Q. Fu
Atmos. Chem. Phys., 13, 6091–6099, https://doi.org/10.5194/acp-13-6091-2013, https://doi.org/10.5194/acp-13-6091-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
To what extent is the description of streets important in estimating local air-quality? A case study over Paris
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Extreme ozone episodes in a major Mediterranean urban area
Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Effect of the boundary layer low-level jet on fast fog spatial propagation
Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations
Using synthetic case studies to explore the spread and calibration of ensemble atmospheric dispersion forecasts
Meteorological modeling sensitivity to parameterizations and satellite-derived surface datasets during the 2017 Lake Michigan Ozone Study
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Lagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
Determination of the chemical equator from GEOS-Chem model simulation: a focus on the tropical western Pacific region
Uncertainty in parameterized convection remains a key obstacle for estimating surface fluxes of carbon dioxide
Antarctic atmospheric Richardson number from radiosonde measurements and AMPS
Divergent convective outflow in large-eddy simulations
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Evaluation and bias correction of probabilistic volcanic ash forecasts
The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
The Sun's role in decadal climate predictability in the North Atlantic
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024, https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Short summary
We examined the links between the El Niño–Southern Oscillation (ENSO) and tropospheric ozone (O3) using model data. Our results show that ENSO impacts on tropospheric O3 are mainly found over oceans, while the signature of ENSO over continents is largely unclear. These impacts in the midlatitude regions over the Southern Hemisphere may be more significant than previously known. The responses of O3 to ENSO are weak in the middle troposphere and stronger in the upper and lower troposphere.
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024, https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
Short summary
Models are used to make forecasts of volcanic ash dispersion during eruptions. These models have unknown inputs relating to the eruption itself, physical processes, and meteorological conditions. We use statistical models to predict the output of the expensive physical model and show we can account for the effects of the different inputs. We compare the model to real-world observations and show that accounting for all sources of uncertainty may lead to different conclusions about the inputs.
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1043, https://doi.org/10.5194/egusphere-2024-1043, 2024
Short summary
Short summary
This study highlights the interest of using a street network model to estimate pollutant concentrations of NOx, NO2, and PM2.5 in heterogeneous urban areas, particularly those adjacent to highways, compared with the Subgrid approach embedded in the 3D eulerian model CHIMERE. However, the study also reveals comparable performance between the two approaches for the aforementioned pollutants in areas near the city centre, where urban characteristics are more uniform.
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115, https://doi.org/10.5194/acp-24-5099-2024, https://doi.org/10.5194/acp-24-5099-2024, 2024
Short summary
Short summary
Based on long-term observational, reanalysis, and numerical model simulation datasets from 1901 through 2014, this study shows that precipitation over the East Asian monsoon boundary zone featured prominent interdecadal changes, with dry summers during the periods preceding 1927, 1939–1945, 1968–1982, and 1998–2010 and wet summers during 1928–1938, 1946–1967, and 2011 onwards. The Indian Ocean basin mode is an important oceanic modulator responsible for its interdecadal variations.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472, https://doi.org/10.5194/acp-24-4451-2024, https://doi.org/10.5194/acp-24-4451-2024, 2024
Short summary
Short summary
Extreme warming events with surface temperature going above 0°C can occur in the high-Arctic winter. Although reanalysis data show that these events were short-lived and occurred rarely during 1980–2021, they have become more frequent, stronger, and longer lasting latterly. A dipole pattern, comprising high- and low-pressure systems, is found to be the key in driving them. These findings have implications for the recent changes in sea ice, hydrological cycle, and ecosystem over the Arctic.
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024, https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Short summary
To show that the three-dimensional dispersion of plumes simulated by the Atmospheric Radionuclide Transport Model within the planetary boundary layer agrees with real plumes, we identify the most important input parameters and analyse the turbulence properties of five different turbulence models in very unstable stratification conditions using their deviation from the well-mixed state. Simulations show that one model agrees slightly better in unstable stratification conditions.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023, https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Short summary
Accurate fog forecasting is difficult in a complex environment. Spatial variations in soil moisture could impact fog. Here, we carried out fog simulations with spatially different soil moisture in complex topography. The soil moisture was calculated using satellite observations. The results show that the spatial variations in soil moisture do not have a significant impact on where fog occurs but do impact how long fog lasts. This finding could improve fog forecasts in the future.
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023, https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Short summary
In this study, we quantitatively study the effect of the boundary layer low-level jet (BLLJ) on fast fog spatial propagation; i.e., the fog area expands very fast along a certain direction. The wind speed (10 m s−1) and direction (southeast) of the BLLJ core are consistent with fog propagation (9.6 m s−1). The BLLJ-induced temperature and moisture advections are possible reasons for fast fog propagation. The propagation speed would decrease by 6.4 m s−1 if these advections were turned off.
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023, https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary
Short summary
This study focuses on three medicanes, tropical-like cyclones that form in the Mediterranean Sea, studied by ensemble forecasting. This involved multiple simulations of the same event by varying initial conditions and model physics parameters, especially related to convection, which showed comparable results. It is found that medicane development is influenced by the model's ability to predict precursor events and the interaction between upper and lower atmosphere dynamics and thermodynamics.
Andrew R. Jones, Susan J. Leadbetter, and Matthew C. Hort
Atmos. Chem. Phys., 23, 12477–12503, https://doi.org/10.5194/acp-23-12477-2023, https://doi.org/10.5194/acp-23-12477-2023, 2023
Short summary
Short summary
The paper explores spread and calibration properties of ensemble atmospheric dispersion forecasts for hypothetical release events. Real-time forecasts from an ensemble weather prediction system were used to generate an ensemble of dispersion predictions and assessed against simulations produced using analysis meteorology. Results demonstrate good performance overall but highlight more skilful predictions for material released in the upper air compared with releases near the surface.
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
Atmos. Chem. Phys., 23, 7589–7609, https://doi.org/10.5194/acp-23-7589-2023, https://doi.org/10.5194/acp-23-7589-2023, 2023
Short summary
Short summary
Atmospheric convection plays a key role in tracer transport in the troposphere. Global meteorological forecasts and reanalyses typically have a coarse spatiotemporal resolution that does not adequately resolve the dynamics, transport, and mixing of air associated with storm systems or deep convection. We discuss the application of the extreme convection parameterization in a Lagrangian transport model to improve simulations of tracer transport from the boundary layer into the free troposphere.
Angshuman Modak and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 7535–7549, https://doi.org/10.5194/acp-23-7535-2023, https://doi.org/10.5194/acp-23-7535-2023, 2023
Short summary
Short summary
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental temperature record including the corrections for the pattern effect. The improved estimate factors in the uncertainty caused by the underlying sea-surface temperature datasets used in the estimates of pattern effect. This together with the inter-model spread lifts the corresponding IPCC AR6 estimate to 3.2 K [1.8 to 11.0], which is lower and better constrained than in past studies.
Xiaoyu Sun, Mathias Palm, Katrin Müller, Jonas Hachmeister, and Justus Notholt
Atmos. Chem. Phys., 23, 7075–7090, https://doi.org/10.5194/acp-23-7075-2023, https://doi.org/10.5194/acp-23-7075-2023, 2023
Short summary
Short summary
The tropical western Pacific (TWP) is an active interhemispheric transport region contributing significantly to the global climate. A method to determine the chemical equator was developed by model simulations of a virtual passive tracer to analyze transport in the tropics, with a focus on the TWP region. We compare the chemical equator with tropical rain belts and wind fields and obtain a vertical pattern of interhemispheric transport processes which shows tilt structure in certain seasons.
Andrew E. Schuh and Andrew R. Jacobson
Atmos. Chem. Phys., 23, 6285–6297, https://doi.org/10.5194/acp-23-6285-2023, https://doi.org/10.5194/acp-23-6285-2023, 2023
Short summary
Short summary
A comparison of atmospheric carbon dioxide concentrations resulting from two different atmospheric transport models showed large differences in predicted concentrations with significant space–time correlations. The vertical mixing of long-lived trace gases by convection was determined to be the main driver of these differences. The resulting uncertainty was deemed significant to the application of using atmospheric gradients of carbon dioxide to estimate surface fluxes of carbon dioxide.
Qike Yang, Xiaoqing Wu, Xiaodan Hu, Zhiyuan Wang, Chun Qing, Tao Luo, Pengfei Wu, Xianmei Qian, and Yiming Guo
Atmos. Chem. Phys., 23, 6339–6355, https://doi.org/10.5194/acp-23-6339-2023, https://doi.org/10.5194/acp-23-6339-2023, 2023
Short summary
Short summary
The AMPS-forecasted Richardson number was first comprehensively validated over the Antarctic continent. Some potential underlying reasons for the discrepancies between the forecasts and observations were analyzed. The underlying physical processes of triggering atmospheric turbulence in Antarctica were investigated. Our results suggest that the estimated Richardson number by the AMPS is reasonable and the turbulence conditions in Antarctica are well revealed.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023, https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Cited articles
Allen, C. J. T. and Washington, R.: The low-level jet dust emission mechanism in the central Sahara: Observations from Bordj-Badji Mokhtar during the June 2011 Fennec Intensive Observation Period, J. Geophys. Res.-Atmos., 119, 2990–3015, https://doi.org/10.1002/2013jd020594, 2014.
Andreas, E. L., Claffy, K. J., and Makshtas, A. P.: Low-level atmospheric jets and inversions over the western Weddell Sea, Bound.-Lay. Meteorol., 97, 459–486, https://doi.org/10.1023/a:1002793831076, 2000.
Baas, P., Bosveld, F. C., Baltink, H. K., and Holtslag, A. A. M.: A Climatology of Nocturnal Low-Level Jets at Cabauw, J. Appl. Meteorol. Clim., 48, 1627–1642, https://doi.org/10.1175/2009jamc1965.1, 2009.
Banta, R. M., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L., Coulter, R. L., and Mahrt, L.: Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Lay. Meteorol., 105, 221–252, https://doi.org/10.1023/a:1019992330866, 2002.
Blackadar, A. K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions, B. Am. Meteorol. Soc., 83, 283–290, 1957.
Bonner, W. D.: Climatology of the low level jet, Mon. Weather Rev., 96, 833–850, 1968.
Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, L. R., and Yang, B.: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006, J. Geophys. Res.-Atmos., 118, 797–812, https://doi.org/10.1002/jgrd.50122, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diner, D. J., Martonchik, J. V., Kahn, R. A., Pinty, B., Gobron, N., Nelson, D. L., and Holben, B. N.: Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land, Remote Sens. Environ., 94, 155–171, https://doi.org/10.1016/j.rse.2004.09.009, 2005.
Du, Y., Zhang, Q., Chen, Y.-L., Zhao, Y., and Wang, X.: Numerical Simulations of Spatial Distributions and Diurnal Variations of Low-Level Jets in China during Early Summer, J. Climate, 27, 5747–5767, https://doi.org/10.1175/jcli-d-13-00571.1, 2014.
ECMWF: ERA-Interim, available at: http://apps.ecmwf.int/datasets/, last access: 19 April 2016.
Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., and Tegen, I.: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res.-Atmos., 118, 6100–6121, https://doi.org/10.1002/jgrd.50394, 2013.
Fu, Q., Thorsen, T. J., Su, J., Ge, J. M., and Huang, J. P.: Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations, J. Quant. Spectrosc. Ra., 110, 1640–1653, https://doi.org/10.1016/j.jqsrt.2009.03.010, 2009.
Gao, H. and Washington, R.: The spatial and temporal characteristics of TOMS AI over the Tarim Basin, China, Atmos. Environ., 43, 1106–1115, https://doi.org/10.1016/j.atmosenv.2008.11.013, 2009.
Ge, J. M., Su, J., Ackerman, T. P., Fu, Q., Huang, J. P., and Shi, J. S.: Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-US joint field experiment, J. Geophys. Res.-Atmos., 115, D00K12, https://doi.org/10.1029/2009jd013263, 2010.
Ge, J. M., Huang, J. P., Su, J., Bi, J. R., and Fu, Q.: Shortwave radiative closure experiment and direct forcing of dust aerosol over northwestern China, Geophys. Res. Lett., 38, L24803, https://doi.org/10.1029/2011gl049571, 2011.
Ge, J. M., Huang,J. P., Xu, C. P., Qi, Y. L., and Liu, H. Y.: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective, J. Geophys. Res.-Atmos., 119, 11772–11783, https://doi.org/10.1002/2014jd022280, 2014.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273, https://doi.org/10.1029/2000jd000053, 2001.
Heinold, B., Knippertz, P., and Beare, R. J.: Idealized large-eddy simulations of nocturnal low-level jets over subtropical desert regions and implications for dust-generating winds, Q. J. Roy. Meteor. Soc., 141, 1740–1752, https://doi.org/10.1002/qj.2475, 2015.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007gl029938, 2007.
Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., and Ayers, J. K.: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res.-Atmos., 113, D23212, https://doi.org/10.1029/2008jd010620, 2008.
Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys., 9, 4011–4021, https://doi.org/10.5194/acp-9-4011-2009, 2009.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos., 119, 11398–11416, https://doi.org/10.1002/2014jd021796, 2014.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate change, Nature Climate Change, 6, 166–171, https://doi.org/10.1038/nclimate2837, 2016.
Kahl, J. D.: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast, Int. J. Climatol., 10, 537–548, https://doi.org/10.1002/joc.3370100509, 1990.
Knippertz, P.: Dust emissions in the West African heat trough – the role of the diurnal cycle and of extratropical disturbances, Meteorol. Z., 17, 553–563, https://doi.org/10.1127/0941-2948/2008/0315, 2008.
Knippertz, P. and Todd, M. C.: Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and implications for modeling, Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011rg000362, 2012.
Ling, X., Guo, W., and Fu, C.: Composite analysis of impacts of dust aerosols on surface atmospheric variables and energy budgets in a semiarid region of China, J. Geophys. Res.-Atmos., 119, 3107–3123, https://doi.org/10.1002/2013jd020274, 2014.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Lu, H. and Shao, Y. P.: A new model for dust emission by saltation bombardment, J. Geophys. Res.-Atmos., 104, 16827–16841, https://doi.org/10.1029/1999jd900169, 1999.
NASA Atmospheric Data Center: MISR, available at: https://eosweb.larc.nasa.gov/project/misr/misr_table, last access: 8 January 2015.
Ranjha, R., Svensson, G., Tjernstrom, M., and Semedo, A.: Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis, Tellus A, 65, 20412, https://doi.org/10.3402/tellusa.v65i0.20412, 2013.
Richardson, H., Basu, S., and Holtslag, A. A. M.: Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number, Bound.-Lay. Meteorol., 148, 93–109, https://doi.org/10.1007/s10546-013-9812-3, 2013.
Rife, D. L., Pinto, J. O., Monaghan, A. J., Davis, C. A., and Hannan, J. R.: Global Distribution and Characteristics of Diurnally Varying Low-Level Jets, J. Climate, 23, 5041–5064, https://doi.org/10.1175/2010jcli3514.1, 2010.
Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Boenisch, G., Laurent, B., and Macke, A.: Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models, J. Geophys. Res.-Atmos., 114, D10201, https://doi.org/10.1029/2008jd010325, 2009.
Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system science, Aeolian Research, 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001, 2011.
Stensrud, D. J.: Importance of low-level jets to climate: A review, J. Climate, 9, 1698–1711, https://doi.org/10.1175/1520-0442(1996)009<1698:iolljt>2.0.co;2, 1996.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic, 666 pp., Dordrecht, the Netherlands, 1988.
Su, J., Huang, J., Fu, Q., Minnis, P., Ge, J., and Bi, J.: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements, Atmos. Chem. Phys., 8, 2763–2771, https://doi.org/10.5194/acp-8-2763-2008, 2008.
Sun, J. M., Zhang, M. Y., and Liu, T. S.: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate, J. Geophys. Res.-Atmos., 106, 10325–10333, https://doi.org/10.1029/2000jd900665, 2001.
Tegen, I.: Modeling the mineral dust aerosol cycle in the climate system, Quaternary Sci. Rev., 22, 1821–1834, https://doi.org/10.1016/s0277-3791(03)00163-x, 2003.
Tegen, I., Schepanski, K., and Heinold, B.: Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations, Atmos. Chem. Phys., 13, 2381–2390, https://doi.org/10.5194/acp-13-2381-2013, 2013.
Todd, M. C., Washington, R., Raghavan, S., Lizcano, G., and Knippertz, P.: Regional model simulations of the Bodele low-level jet of northern Chad during the Bodele Dust Experiment (BoDEx 2005), J. Climate, 21, 995–1012, https://doi.org/10.1175/2007jcli1766.1, 2008.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, Nat. Geosci., 2, 557–560, https://doi.org/10.1038/ngeo583, 2009.
Van de Wiel, B. J. H., Moene, A. F., Steeneveld, G. J., Baas, P., Bosveld, F. C., and Holtslag, A. A. M.: A Conceptual View on Inertial Oscillations and Nocturnal Low-Level Jets, J. Atmos. Sci., 67 2679–2689, https://doi.org/10.1175/2010jas3289.1, 2010.
Washington, R. and Todd, M. C.: Atmospheric controls on mineral dust emission from the Bodele Depression, Chad: The role of the low level jet, Geophys. Res. Lett., 32, L17701, https://doi.org/10.1029/2005gl023597, 2005.
Yumimoto, K., Eguchi, K., Uno, I., Takemura, T., Liu, Z., Shimizu, A., and Sugimoto, N.: An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models, Atmos. Chem. Phys., 9, 8545–8558, https://doi.org/10.5194/acp-9-8545-2009, 2009.
Zhang, X. Y., Gong, S. L., Zhao, T. L., Arimoto, R., Wang, Y. Q., and Zhou, Z. J.: Sources of Asian dust and role of climate change versus desertification in Asian dust emission, Geophys. Res. Lett., 30, 2272, https://doi.org/10.1029/2003gl018206, 2003.
Short summary
Nocturnal low-level jet (NLLJ), which refers to a narrow zone of strong winds, occurs frequently over the Taklimakan Desert. It is found that the NLLJ contains more momentum than without NLLJ, and the downward momentum transfer process is more intense and rapid in the warm season. The coincidence of the larger surface winds during NLLJ days with an enhancement of aerosol optical depth indicates that the NLLJ is an important mechanism for dust emission and transport over this region.
Nocturnal low-level jet (NLLJ), which refers to a narrow zone of strong winds, occurs frequently...
Altmetrics
Final-revised paper
Preprint