Articles | Volume 17, issue 21
Atmos. Chem. Phys., 17, 12893–12910, 2017
https://doi.org/10.5194/acp-17-12893-2017

Special issue: The Polar Stratosphere in a Changing Climate (POLSTRACC) (ACP/AMT...

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 17, 12893–12910, 2017
https://doi.org/10.5194/acp-17-12893-2017

Research article 01 Nov 2017

Research article | 01 Nov 2017

Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

Farahnaz Khosrawi et al.

Related authors

Investigation of space-borne trace gas products over St. Petersburg and Yekaterinburg, Russia by using COCCON observations
Carlos Alberti, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, and Thorsten Warneke
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-237,https://doi.org/10.5194/amt-2021-237, 2021
Preprint under review for AMT
Short summary
Can the assimilation of water isotopologue observation improve the quality of tropical diabatic heating and precipitation?
Farahnaz Khosrawi, Kinya Toride, Kei Yoshimura, Christopher J. Diekmann, Benjamin Ertl, Frank Hase, and Matthias Schneider
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-49,https://doi.org/10.5194/wcd-2021-49, 2021
Revised manuscript under review for WCD
Short summary
Challenge of modelling GLORIA observations of UT/LMS trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-574,https://doi.org/10.5194/acp-2021-574, 2021
Preprint under review for ACP
Short summary
Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, Andre Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-437,https://doi.org/10.5194/acp-2021-437, 2021
Revised manuscript under review for ACP
Short summary
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021,https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781, https://doi.org/10.5194/acp-21-15771-2021,https://doi.org/10.5194/acp-21-15771-2021, 2021
Short summary
Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021,https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021,https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary

Cited articles

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007.
Brühl, C., Steil, B., Stiller, G., Funke, B., and Jöckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 5585–5598, https://doi.org/10.5194/acp-7-5585-2007, 2007.
Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and Crutzen, P. J.: Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett., 21, 2479–2482, 1994.
Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A thermodynamic model of the system HCl-HNO3-H2SO4-H2O, including solubilities of HBr, from 328 K to  <  200 K, J. Phys. Chem., 99, 11557–11574, 1995.
Carslaw, K. S., Kettleborough, J., Northway, M. J., Davies, S., Gao, R.-S., Fahey, D. W., Baumgardner, D. G., Chipperfield, M. P., and Kleinböhl, A.: A vortex-wide simulation of the growth and sedimentation of large nitric acid hydrate particles, J. Geophys. Res., 107, 8300, https://doi.org/10.1029/2001JD000467, 2002.
Download
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Altmetrics
Final-revised paper
Preprint