Articles | Volume 17, issue 21
https://doi.org/10.5194/acp-17-12893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-12893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter
Farahnaz Khosrawi
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Oliver Kirner
Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
Björn-Martin Sinnhuber
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Sören Johansson
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Michael Höpfner
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Michelle L. Santee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Lucien Froidevaux
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Jörn Ungermann
Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, Germany
Roland Ruhnke
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Wolfgang Woiwode
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Hermann Oelhaf
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Peter Braesicke
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Viewed
Total article views: 3,269 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Jun 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,064 | 1,100 | 105 | 3,269 | 90 | 80 |
- HTML: 2,064
- PDF: 1,100
- XML: 105
- Total: 3,269
- BibTeX: 90
- EndNote: 80
Total article views: 2,593 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Nov 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,670 | 831 | 92 | 2,593 | 81 | 65 |
- HTML: 1,670
- PDF: 831
- XML: 92
- Total: 2,593
- BibTeX: 81
- EndNote: 65
Total article views: 676 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Jun 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
394 | 269 | 13 | 676 | 9 | 15 |
- HTML: 394
- PDF: 269
- XML: 13
- Total: 676
- BibTeX: 9
- EndNote: 15
Viewed (geographical distribution)
Total article views: 3,269 (including HTML, PDF, and XML)
Thereof 3,274 with geography defined
and -5 with unknown origin.
Total article views: 2,593 (including HTML, PDF, and XML)
Thereof 2,620 with geography defined
and -27 with unknown origin.
Total article views: 676 (including HTML, PDF, and XML)
Thereof 654 with geography defined
and 22 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
34 citations as recorded by crossref.
- Record‐Low Arctic Stratospheric Ozone in 2020: MLS Observations of Chemical Processes and Comparisons With Previous Extreme Winters G. Manney et al. 10.1029/2020GL089063
- Studying Chemical Ozone Depletion and Dynamic Processes in the Arctic Stratosphere in the Winter 2019/2020 N. Tsvetkova et al. 10.3103/S1068373921090065
- Model estimations of geophysical variability between satellite measurements of ozone profiles P. Sheese et al. 10.5194/amt-14-1425-2021
- Analysis of the Variability of Stratospheric Gases Near St. Petersburg Using Ground-Based Spectroscopic Measurements Y. Virolainen et al. 10.1134/S0001433821010138
- Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements M. Steiner et al. 10.5194/gmd-14-935-2021
- Estimates of UV Indices During the Periods of Reduced Ozone Content over Siberia in Winter–Spring 2016 N. Chubarova et al. 10.1134/S1024856019020040
- Investigation and forecast of Sudden Stratospheric Warming events with chemistry climate model SOCOL N. Tsvetkova et al. 10.1088/1755-1315/606/1/012062
- The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020 D. Ardra et al. 10.1021/acsearthspacechem.1c00333
- Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016 A. Marsing et al. 10.5194/acp-19-10757-2019
- The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere J. Kult-Herdin et al. 10.1088/1748-9326/acb0e6
- M2‐SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA‐2 Transport K. Wargan et al. 10.1029/2022EA002632
- Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation C. Voigt et al. 10.5194/acp-18-15623-2018
- Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden P. Voelger & P. Dalin 10.5194/acp-23-5551-2023
- Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016 M. Braun et al. 10.5194/acp-19-13681-2019
- Climatology of Polar Stratospheric Clouds Derived from CALIPSO and SLIMCAT D. Li et al. 10.3390/rs16173285
- The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI A. de Laat et al. 10.5194/acp-24-4511-2024
- Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models F. Haenel et al. 10.5194/acp-22-2843-2022
- Toward a Reanalysis of Stratospheric Ozone for Trend Studies: Assimilation of the Aura Microwave Limb Sounder and Ozone Mapping and Profiler Suite Limb Profiler Data K. Wargan et al. 10.1029/2019JD031892
- Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations F. Khosrawi et al. 10.5194/acp-18-8873-2018
- Response of Arctic ozone to sudden stratospheric warmings A. de la Cámara et al. 10.5194/acp-18-16499-2018
- Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere M. Kilian et al. 10.5194/acp-20-11697-2020
- Numerical Modeling of Ozone Loss in the Exceptional Arctic Stratosphere Winter–Spring of 2020 S. Smyshlyaev et al. 10.3390/atmos12111470
- Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere I. Tritscher et al. 10.5194/acp-19-543-2019
- Near‐Complete Local Reduction of Arctic Stratospheric Ozone by Severe Chemical Loss in Spring 2020 I. Wohltmann et al. 10.1029/2020GL089547
- Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data P. Vargin et al. 10.1134/S0001433820050114
- Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour L. Thölix et al. 10.5194/acp-18-15047-2018
- Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations S. Johansson et al. 10.5194/acp-19-8311-2019
- Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections M. Leroux & V. Noel 10.5194/acp-24-6433-2024
- A Process Study on Thinning of Arctic Winter Cirrus Clouds With High‐Resolution ICON‐ART Simulations S. Gruber et al. 10.1029/2018JD029815
- Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016 H. Ziereis et al. 10.5194/acp-22-3631-2022
- Airborne limb-imaging measurements of temperature, HNO<sub>3</sub>, O<sub>3</sub>, ClONO<sub>2</sub>, H<sub>2</sub>O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS S. Johansson et al. 10.5194/amt-11-4737-2018
- Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter F. Khosrawi et al. 10.5194/acp-17-12893-2017
- Dynamic Processes in the Arctic Stratosphere in the Winter of 2018/2019 P. Vargin et al. 10.3103/S1068373920060011
- Major Sudden Stratospheric Warming in the Arctic in February 2018 and Its Impacts on the Troposphere, Mesosphere, and Ozone Layer P. Vargin & B. Kiryushov 10.3103/S1068373919020043
31 citations as recorded by crossref.
- Record‐Low Arctic Stratospheric Ozone in 2020: MLS Observations of Chemical Processes and Comparisons With Previous Extreme Winters G. Manney et al. 10.1029/2020GL089063
- Studying Chemical Ozone Depletion and Dynamic Processes in the Arctic Stratosphere in the Winter 2019/2020 N. Tsvetkova et al. 10.3103/S1068373921090065
- Model estimations of geophysical variability between satellite measurements of ozone profiles P. Sheese et al. 10.5194/amt-14-1425-2021
- Analysis of the Variability of Stratospheric Gases Near St. Petersburg Using Ground-Based Spectroscopic Measurements Y. Virolainen et al. 10.1134/S0001433821010138
- Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements M. Steiner et al. 10.5194/gmd-14-935-2021
- Estimates of UV Indices During the Periods of Reduced Ozone Content over Siberia in Winter–Spring 2016 N. Chubarova et al. 10.1134/S1024856019020040
- Investigation and forecast of Sudden Stratospheric Warming events with chemistry climate model SOCOL N. Tsvetkova et al. 10.1088/1755-1315/606/1/012062
- The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020 D. Ardra et al. 10.1021/acsearthspacechem.1c00333
- Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016 A. Marsing et al. 10.5194/acp-19-10757-2019
- The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere J. Kult-Herdin et al. 10.1088/1748-9326/acb0e6
- M2‐SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With MERRA‐2 Transport K. Wargan et al. 10.1029/2022EA002632
- Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation C. Voigt et al. 10.5194/acp-18-15623-2018
- Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden P. Voelger & P. Dalin 10.5194/acp-23-5551-2023
- Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016 M. Braun et al. 10.5194/acp-19-13681-2019
- Climatology of Polar Stratospheric Clouds Derived from CALIPSO and SLIMCAT D. Li et al. 10.3390/rs16173285
- The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI A. de Laat et al. 10.5194/acp-24-4511-2024
- Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models F. Haenel et al. 10.5194/acp-22-2843-2022
- Toward a Reanalysis of Stratospheric Ozone for Trend Studies: Assimilation of the Aura Microwave Limb Sounder and Ozone Mapping and Profiler Suite Limb Profiler Data K. Wargan et al. 10.1029/2019JD031892
- Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations F. Khosrawi et al. 10.5194/acp-18-8873-2018
- Response of Arctic ozone to sudden stratospheric warmings A. de la Cámara et al. 10.5194/acp-18-16499-2018
- Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere M. Kilian et al. 10.5194/acp-20-11697-2020
- Numerical Modeling of Ozone Loss in the Exceptional Arctic Stratosphere Winter–Spring of 2020 S. Smyshlyaev et al. 10.3390/atmos12111470
- Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere I. Tritscher et al. 10.5194/acp-19-543-2019
- Near‐Complete Local Reduction of Arctic Stratospheric Ozone by Severe Chemical Loss in Spring 2020 I. Wohltmann et al. 10.1029/2020GL089547
- Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data P. Vargin et al. 10.1134/S0001433820050114
- Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour L. Thölix et al. 10.5194/acp-18-15047-2018
- Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations S. Johansson et al. 10.5194/acp-19-8311-2019
- Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections M. Leroux & V. Noel 10.5194/acp-24-6433-2024
- A Process Study on Thinning of Arctic Winter Cirrus Clouds With High‐Resolution ICON‐ART Simulations S. Gruber et al. 10.1029/2018JD029815
- Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016 H. Ziereis et al. 10.5194/acp-22-3631-2022
- Airborne limb-imaging measurements of temperature, HNO<sub>3</sub>, O<sub>3</sub>, ClONO<sub>2</sub>, H<sub>2</sub>O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS S. Johansson et al. 10.5194/amt-11-4737-2018
3 citations as recorded by crossref.
- Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter F. Khosrawi et al. 10.5194/acp-17-12893-2017
- Dynamic Processes in the Arctic Stratosphere in the Winter of 2018/2019 P. Vargin et al. 10.3103/S1068373920060011
- Major Sudden Stratospheric Warming in the Arctic in February 2018 and Its Impacts on the Troposphere, Mesosphere, and Ozone Layer P. Vargin & B. Kiryushov 10.3103/S1068373919020043
Latest update: 20 Jan 2025
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive...
Special issue
Altmetrics
Final-revised paper
Preprint