Articles | Volume 25, issue 2
https://doi.org/10.5194/acp-25-759-2025
https://doi.org/10.5194/acp-25-759-2025
Research article
 | 
21 Jan 2025
Research article |  | 21 Jan 2025

Unleashing the potential of geostationary satellite observations in air quality forecasting through artificial intelligence techniques

Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu

Related authors

A new insight into the vertical differences in NO2 heterogeneous reaction to produce HONO over inland and marginal seas
Chengzhi Xing, Shiqi Xu, Yuhang Song, Cheng Liu, Yuhan Liu, Keding Lu, Wei Tan, Chengxin Zhang, Qihou Hu, Shanshan Wang, Hongyu Wu, and Hua Lin
Atmos. Chem. Phys., 23, 5815–5834, https://doi.org/10.5194/acp-23-5815-2023,https://doi.org/10.5194/acp-23-5815-2023, 2023
Short summary
Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations
Yuhang Song, Chengzhi Xing, Cheng Liu, Jinan Lin, Hongyu Wu, Ting Liu, Hua Lin, Chengxin Zhang, Wei Tan, Xiangguang Ji, Haoran Liu, and Qihua Li
Atmos. Chem. Phys., 23, 1803–1824, https://doi.org/10.5194/acp-23-1803-2023,https://doi.org/10.5194/acp-23-1803-2023, 2023
Short summary
A deep learning approach to increase the value of satellite data for PM2.5 monitoring in China
Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Shulin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, and Meng Gao
EGUsphere, https://doi.org/10.5194/egusphere-2022-578,https://doi.org/10.5194/egusphere-2022-578, 2022
Preprint archived
Short summary

Cited articles

Altmann, A., Tolosi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340–1347, doi:10.1093/bioinformatics/btq134, 2010.  
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., and Phillips, T.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021. 
Baghanam, A. H., Nourani, V., Bejani, M., Pourali, H., Kantoush, S. A., and Zhang, Y.: A systematic review of predictor screening methods for downscaling of numerical climate models, Earth-Sci. Rev., 253, 104773, https://doi.org/10.1016/j.earscirev.2024.104773, 2024. 
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, 2023. 
Boukabara, S.-A., Krasnopolsky, V., Penny, S. G., Stewart, J. Q., McGovern, A., Hall, D., Ten Hoeve, J. E., Hickey, J., Allen Huang, H.-L., and Williams, J. K.: Outlook for exploiting artificial intelligence in the earth and environmental sciences, B. Am. Meteorol. Soc., 102, E1016–E1032, 2020. 
Download
Short summary
This research utilizes hourly air pollution observations from the world’s first geostationary satellite to develop a spatiotemporal neural network model for full-coverage surface NO2 pollution prediction over the next 24 hours, achieving outstanding forecasting performance and efficacy. These results highlight the profound impact of geostationary satellite observations in advancing air quality forecasting models, thereby contributing to future models for health exposure to air pollution.
Share
Altmetrics
Final-revised paper
Preprint