Articles | Volume 25, issue 2
https://doi.org/10.5194/acp-25-759-2025
https://doi.org/10.5194/acp-25-759-2025
Research article
 | 
21 Jan 2025
Research article |  | 21 Jan 2025

Unleashing the potential of geostationary satellite observations in air quality forecasting through artificial intelligence techniques

Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu

Related authors

A new insight into the vertical differences in NO2 heterogeneous reaction to produce HONO over inland and marginal seas
Chengzhi Xing, Shiqi Xu, Yuhang Song, Cheng Liu, Yuhan Liu, Keding Lu, Wei Tan, Chengxin Zhang, Qihou Hu, Shanshan Wang, Hongyu Wu, and Hua Lin
Atmos. Chem. Phys., 23, 5815–5834, https://doi.org/10.5194/acp-23-5815-2023,https://doi.org/10.5194/acp-23-5815-2023, 2023
Short summary
Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations
Yuhang Song, Chengzhi Xing, Cheng Liu, Jinan Lin, Hongyu Wu, Ting Liu, Hua Lin, Chengxin Zhang, Wei Tan, Xiangguang Ji, Haoran Liu, and Qihua Li
Atmos. Chem. Phys., 23, 1803–1824, https://doi.org/10.5194/acp-23-1803-2023,https://doi.org/10.5194/acp-23-1803-2023, 2023
Short summary
A deep learning approach to increase the value of satellite data for PM2.5 monitoring in China
Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Shulin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, and Meng Gao
EGUsphere, https://doi.org/10.5194/egusphere-2022-578,https://doi.org/10.5194/egusphere-2022-578, 2022
Preprint archived
Short summary
Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021,https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
An improved TROPOMI tropospheric HCHO retrieval over China
Wenjing Su, Cheng Liu, Ka Lok Chan, Qihou Hu, Haoran Liu, Xiangguang Ji, Yizhi Zhu, Ting Liu, Chengxin Zhang, Yujia Chen, and Jianguo Liu
Atmos. Meas. Tech., 13, 6271–6292, https://doi.org/10.5194/amt-13-6271-2020,https://doi.org/10.5194/amt-13-6271-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
State-wide California 2020 carbon dioxide budget estimated with OCO-2 and OCO-3 satellite data
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yu Yan Cui, Dien Wu, Alex Turner, and Marc Fischer
Atmos. Chem. Phys., 25, 8475–8492, https://doi.org/10.5194/acp-25-8475-2025,https://doi.org/10.5194/acp-25-8475-2025, 2025
Short summary
Satellite detection of NO2 distributions using TROPOMI and TEMPO and comparison with ground-based concentration measurements
Summer Acker, Tracey Holloway, and Monica Harkey
Atmos. Chem. Phys., 25, 8271–8288, https://doi.org/10.5194/acp-25-8271-2025,https://doi.org/10.5194/acp-25-8271-2025, 2025
Short summary
Measurement report: Diurnal variability in NO2 and HCHO lower-tropospheric vertical profiles in southeastern Los Angeles
Peter K. Peterson, Lisa F. Hernandez, Leslie Tanaka, and Alejandro Dunnick
Atmos. Chem. Phys., 25, 7777–7788, https://doi.org/10.5194/acp-25-7777-2025,https://doi.org/10.5194/acp-25-7777-2025, 2025
Short summary
Biosphere–atmosphere related processes influence trace-gas and aerosol satellite–model biases
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
Atmos. Chem. Phys., 25, 7269–7297, https://doi.org/10.5194/acp-25-7269-2025,https://doi.org/10.5194/acp-25-7269-2025, 2025
Short summary
Estimation of diurnal emissions of CO2 from thermal power plants using spaceborne integrated path differential absorption (IPDA) lidar
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
Atmos. Chem. Phys., 25, 6725–6740, https://doi.org/10.5194/acp-25-6725-2025,https://doi.org/10.5194/acp-25-6725-2025, 2025
Short summary

Cited articles

Altmann, A., Tolosi, L., Sander, O., and Lengauer, T.: Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340–1347, doi:10.1093/bioinformatics/btq134, 2010.  
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., and Phillips, T.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021. 
Baghanam, A. H., Nourani, V., Bejani, M., Pourali, H., Kantoush, S. A., and Zhang, Y.: A systematic review of predictor screening methods for downscaling of numerical climate models, Earth-Sci. Rev., 253, 104773, https://doi.org/10.1016/j.earscirev.2024.104773, 2024. 
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, 2023. 
Boukabara, S.-A., Krasnopolsky, V., Penny, S. G., Stewart, J. Q., McGovern, A., Hall, D., Ten Hoeve, J. E., Hickey, J., Allen Huang, H.-L., and Williams, J. K.: Outlook for exploiting artificial intelligence in the earth and environmental sciences, B. Am. Meteorol. Soc., 102, E1016–E1032, 2020. 
Download
Short summary
This research utilizes hourly air pollution observations from the world’s first geostationary satellite to develop a spatiotemporal neural network model for full-coverage surface NO2 pollution prediction over the next 24 hours, achieving outstanding forecasting performance and efficacy. These results highlight the profound impact of geostationary satellite observations in advancing air quality forecasting models, thereby contributing to future models for health exposure to air pollution.
Share
Altmetrics
Final-revised paper
Preprint