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Abstract. Air quality forecasting plays a critical role in mitigating air pollution. However, current physics-based
air pollution predictions encounter challenges in accuracy and spatiotemporal resolution due to limitations in the
understanding of atmospheric physical mechanisms, observational constraints, and computational capacity. The
world’s first geostationary satellite UV–Vis spectrometer, i.e., the Geostationary Environment Monitoring Spec-
trometer (GEMS), offers hourly measurements of atmospheric trace gas pollutants at high spatial resolution over
East Asia. In this study, we successfully incorporate geostationary satellite observations into a neural network
model (GeoNet) to forecast full-coverage surface nitrogen dioxide (NO2) concentrations over eastern China at
4 h intervals for the next 24 h. GeoNet leverages spatiotemporal series of satellite NO2 observations to capture
the intricate relationships among air quality, meteorology, and emissions in both temporal and spatial domains.
Evaluation against ground-based measurements demonstrates that GeoNet accurately predicts diurnal variations
and spatial distribution details of next-day NO2 pollution, yielding a coefficient of determination of 0.68 and a
root mean square of error of 12.31 µg m−3, significantly surpassing traditional air quality model forecasts. The
model’s interpretability reveals that geostationary satellite observations notably improve NO2 forecast capabil-
ity more than other input features, especially over polluted regions. Our findings demonstrate the significant
potential of geostationary satellite observations in artificial-intelligence-based air quality forecasting, with im-
plications for early warning of air pollution events and human health exposure.
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1 Introduction

Since the industrial revolution, numerous countries world-
wide have encountered severe air pollution issues such as
photochemical ozone smog and haze pollution (Hong et al.,
2019), which significantly affect human health, crop yields,
and the global environment (Manisalidis et al., 2020; Sathe
et al., 2021; Guarin et al., 2024). Recent studies have shown
that both long-term and short-term exposure to air pollutants
such as nitrogen dioxide (NO2) can significantly affect hu-
man health, especially the respiratory system (Meng et al.,
2021). Accurate and high-spatial-resolution predictions of
air pollutant concentrations can provide critical information
for sensitive persons to mitigate health risks. Meanwhile, air
quality health risk (AQHI) forecasts and corresponding pub-
lic response recommendations need to be communicated to
the public promptly through public facilities (Tang et al.,
2024; Fino et al., 2021). In recent decades, the advancement
of atmospheric monitoring and modeling has enabled sig-
nificant progress in air quality forecasting based on our un-
derstanding of atmospheric physics and chemistry (Peuch et
al., 2022). Air pollution forecasting not only facilitates re-
sponses to environmental health risks but also improves the
accuracy of climate and weather simulations (Makar et al.,
2015). However, due to our still-limited understanding of at-
mospheric mechanisms and observational and emission con-
straints, existing air quality forecasts based on physical or
statistical models still face challenges in terms of temporal,
spatial, and accuracy aspects (Campbell et al., 2022; Zhong
et al., 2021).

Artificial intelligence (AI) technology has made break-
throughs in the field of Earth science (Zhong et al., 2021;
Boukabara et al., 2020), particularly excelling in address-
ing complex problems that are challenging for traditional
physical paradigms to simulate (Irrgang et al., 2021), such
as weather and climate forecasting (Andersson et al., 2021).
Concerning meteorological data, some large-scale deep
learning models have surpassed the predictive capabilities of
existing numerical weather models to some extent. Exam-
ples include Climax (Nguyen et al., 2023), Pangu-Weather
(Bi et al., 2023), and GraphCast (Lam et al., 2023). Despite
significant progress and impressive performance achieved by
forecasting meteorological variables with AI methods, there
are still limitations in predicting atmospheric pollutant com-
positions. Compared to meteorological parameters, the pre-
diction of air pollutant concentrations is affected by synop-
tic meteorology, chemistry, and anthropogenic emission ac-
tivity, usually with more complex driven mechanisms and
associated uncertainties. Current AI-based air quality fore-
casts often involve time series predictions at a limited num-
ber of observation stations rather than full-coverage predic-
tions over the entire spatial domain (Du et al., 2021). This is
primarily due to the lack of effective air quality observations
with high temporal and spatial resolution simultaneously.

While past polar-orbiting satellite observations such as the
Ozone Monitoring Instrument (OMI) and the TROPospheric
Monitoring Instrument (TROPOMI), have provided exten-
sive coverage of atmospheric pollutant distributions such as
nitrogen dioxide (NO2), sulfate dioxide (SO2), ozone (O3),
and aerosols, they are limited to once-daily overpasses and
are usually affected by clouds (van Geffen et al., 2022; Chan
et al., 2023). This frequency usually exceeds the chemical
lifetimes of many reactive-gas pollutants like NO2, mak-
ing it challenging to offer effective observational constraints
for short-term air quality forecasting with machine learning
(Shah et al., 2020). However, these observations at a fixed
daily overpass time could hardly support the prediction of at-
mospheric trace gas concentrations at other times of the day
under different meteorological conditions. In February 2020,
the world’s first geostationary satellite payload for air pollu-
tion monitoring, the Geostationary Environment Monitoring
Spectrometer (GEMS), began to provide high-coverage and
high-precision air quality observations at an hourly rate for
the East Asian region (Kim et al., 2020). The dynamic pro-
cesses of air pollutants including emission, transformation,
and transport can be observed by the geostationary satellite
during the daytime. This monitoring capability may advance
data-driven air quality forecasting such as machine learn-
ing techniques by offering unprecedented observational con-
straints with high spatial and temporal coverage. Recent ob-
serving system simulation experiments (OSSEs) indicate that
assimilating trace gas observations by geostationary satellites
into chemical models can effectively improve surface ozone
simulations (Shu et al., 2023), nitrogen oxides (NOx), and
emission estimates (Hsu et al., 2024).

Here, based on the unprecedented temporal and spatial
resolution and coverage of the GEMS satellite (Kim et al.,
2020), we incorporated geostationary satellite remote sens-
ing of tropospheric NO2 column densities (refer to Sect. 4
for details) into a neural network model (GeoNet) to forecast
full-coverage surface NO2 concentration over the next day
from the current time t (i.e., t + 24 h). Compared with previ-
ous air quality forecasting based on the simulation of atmo-
spheric physics and chemistry, possibly combined with data
assimilation approaches, GeoNet relies solely on geostation-
ary satellite measurements and ancillary meteorology data.
GeoNet effectively addresses the complex, nonlinear rela-
tionships between future short-term air quality and current
satellite observations, as well as temporally adjacent mete-
orological variables (Zhang et al., 2022). The method em-
ploys satellite and meteorological variables within the spa-
tial vicinity of individual air quality monitoring sites as input
features, with site observations serving as labels for model
training. The resulting model achieves accurate and compre-
hensive air quality predictions across the entire domain over
eastern China, which is a significant achievement given that
past machine learning technologies have relied on only a few
stations or polar-orbiting satellite observations.
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2 Materials and methods

2.1 Geostationary satellite observations of atmospheric
NO2

GEMS is the first UV–Vis spectrometer at a geostation-
ary satellite orbit, measuring atmospheric pollutants such as
NO2, SO2, O3, and HCHO over East Asia at a spatial res-
olution of 3.5 km× 7.5 km at nadir and a temporal resolu-
tion of 1 h during the daytime (Kim et al., 2020). Based on
the unique spectral absorption of trace gases, the atmospheric
NO2 column can be retrieved in visible wavelengths from the
spectra of back-scattered sunlight. The details of the GEMS
NO2 retrieval can be found in the Algorithm Theoretical
Basis Document (available at https://nesc.nier.go.kr/ko/html/
satellite/doc/doc.do, last access: 1 June 2023). In this study,
we used the tropospheric NO2 column from the GEMS NO2
version 2.0 product, as well as the cloud fraction for each
satellite ground pixel. Overall, GEMS NO2 measurements
have a good correlation with ground-based remote sensing
instruments, with correlation coefficients (R) between 0.69
and 0.81 and root mean square of errors (RMSE) between 3.2
and 4.9× 1015 molec. cm−2 (Kim et al., 2023). Our previous
validation results indicated that GEMS NO2 retrievals gener-
ally agreed well with ground-based MAX-DOAS measure-
ments from six sites in China, with correlation coefficients
ranging between 0.69 and 0.92 (Li et al., 2023).

2.2 Ancillary datasets

Other input information including meteorological datasets
is necessary to better constrain the prediction of future
NO2 pollution. Here, both the ERA5 meteorology reanaly-
sis (Hersbach et al., 2020) and the CAMS forecast (Peuch
et al., 2022) were used to provide meteorological parameters
such as zonal and meridional wind (U wind and V wind),
temperature (Temp), relative humidity (RH), and precipita-
tion (Precip). In addition, the fraction of cloud cover avail-
able from the satellite NO2 datasets was also considered. To
fill the missing gaps in the satellite NO2 measurements, we
use both the NO2 concentrations from the WRF-Chem model
(Zhang et al., 2022) and the CAMS forecast of atmospheric
composition. Note that the reanalysis datasets were typically
updated with a delay of 1 week from real time, while the
forecast datasets can provide future 7 d meteorology from the
current time. Therefore, the latency of input datasets would
affect the operational prediction of the GeoNet model. Sur-
face NO2 measurements were used as the ground-truth label
in the model training phase, available from over 1000 na-
tional air quality sites via the China National Environmental
Monitoring Centre (CNEMC) (Kong et al., 2021).

The preprocessing steps of model input datasets, including
outlier detection, missing value handling, resampling, and
normalization, are described in Sect. S1 in the Supplement.

2.3 The GeoNet model

Figure 1 illustrates the structure and methodology of the arti-
ficial intelligence air quality forecasting model established
in this study. Given the distinctive nature of spatiotempo-
ral sequence data for air quality, predictions must consider
not only temporal relationships but also spatial correlations.
The deep learning model employed in this research uti-
lizes convolutional long short-term memory (ConvLSTM) as
its kernel, a variant of the LSTM model designed for the
time series forecasting (Lin et al., 2020). It incorporates a
convolutional network structure to capture spatial features
of three-dimensional inputs. Both input-to-state and state-
to-state transitions involve convolutional structures. ConvL-
STM determines the future state of a unit within a grid based
on inputs from its local neighbors and past states, allowing it
to effectively model the spatiotemporal dynamics of air qual-
ity. The ConvLSTM kernel structure employed in training is
illustrated in Fig. 5a. Here, Xt represents the input at time
t , Ht and Ht−1 denote the outputs at times t and t − 1, and
Ct and Ct−1 represent the states at times t and t − 1. The
computational process is as follows:

it = σ (Xt ∗ wxi+Ht−1 ∗ whi+ bi) (1)
ft = σ (Xt ∗ wxf+Ht−1 ∗ whf+ bf) (2)
ot = σ (Xt ∗ wxo+Ht−1 ∗ who+ bo) (3)
gt = tanh

(
Xt ∗ wxg+Ht−1 ∗ whg+ bg

)
(4)

Ct = ft ×Ct−1+ it × gt (5)
Ht = ot × tanh(Ct ) , (6)

where the asterisk (∗) represents the convolution operator,
w is the convolution kernel, b is the offset, tanh is the hy-
perbolic tangent function, and σ is the activation function of
sigmoid.

The model primarily consists of three components: an en-
coder, a decoder, and fully connected layers. Tropospheric
NO2 observations from the GEMS satellite for different con-
secutive hours within a day, along with corresponding me-
teorological forecast field data, serve as input features for
model training. The encoder processes the spatiotemporal se-
quences of input features for the preceding 8 h (t−7 h, t−6 h,
. . ., t), which are then decoded by the decoder. The final out-
put, representing NO2 concentrations at 4 h intervals for the
next 24 h (t + 4 h, t + 8 h, t + 12 h, . . ., t + 24 h), is produced
through fully connected layers. The loss function of mean
square error (MSE) is calculated by comparing the model
output with the actual values from station observations, and
the model undergoes iterative training. In the training task
for a single station sample, the model utilizes continuous and
distinct hourly dynamic images of all variables within the
spatiotemporal vicinity of the station as input (see Fig. 1c–
d). This effectively considers the intricate correlations in time
and space between air quality, satellite observations, and me-
teorological input features. We trained the GeoNet model
with input features during the whole year of 2021. The train-
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Figure 1. The framework of predicting full-coverage surface NO2 concentration based on geostationary satellite measurements and a Con-
vLSTM neural network model (GeoNet). (a) The structure of the ConvLSTM block; (b) a diagram of the GeoNet model structure with
input and output; (c) an illustration of the model input parameters, including meteorological variables and hourly NO2 measurements by the
geostationary satellite; (d) the input data cube of different features for a single training batch, which is centered at an air quality site.

ing datasets were randomly selected from 75 % of the whole
samples, while the remaining 25 % were used as validation
sets.

2.4 The model configuration and optimization

The model configurations and hyperparameters such as the
optimizer, loss function, L1 or L2 regularization, dropout,
training steps, and epochs can make a difference in the model
performance, including the prediction accuracy and general-
izability. The performance metrics, such as the coefficient of
determination (R2), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error

(MAPE), were used to diagnose the model (see definition
in Sect. S2). Thus, several scenarios of model hyperparam-
eters have been tested during the model training phase. The
model accuracy in validation datasets and the learning rate
curve were used to diagnose the model hyperparameters. The
model parameters mainly include the number of layers and
the dimensions of the hidden layers; both control the model’s
capacity. If the model capacity is relatively small, underfit-
ting may occur; overfitting may exist if it is too large. There-
fore, selecting an appropriate model capacity is crucial for
improving model performance. During the pre-training pro-
cess, the model is trained by combining different numbers of
layers and dimensions of the hidden layers. The mean square
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error (MSE) loss is recorded for each training iteration, and a
heatmap is generated as shown in Fig. S2. From the heatmap,
it can be observed that when the number of layers is 2, and
the dimension of the hidden layer is 256, the model achieves
the minimum MSE Loss. Figure S3 shows the sensitivity test
results of model loss varying with different batch size set-
tings, indicating that a batch size of 64 is optimal. Based on
the model’s MSE loss under different hyperparameter con-
figurations, the best-fitting model can be selected.

The Adam optimization algorithm controls the learning
rate, which can design independent adaptive learning rates
for different parameters. The three initialization parameters
ε, ρ1, and ρ2 of the Adam algorithm are set to be 0.0001, 0.9,
and 0.99, respectively. For the epoch, its size is controlled by
the early stop method. The early stop method monitors the
change in the model’s loss function in the validation set dur-
ing the training process and stops the model training immedi-
ately when the validation loss of the model starts to become
larger. Due to the fluctuation in the loss function, a threshold
ρ is set for the early stopping method in practice, and when
the validation loss of the model becomes large for ρ consecu-
tive epochs, the model is rolled back to the lowest validation
loss, and the training is stopped. The threshold ρ is set to
10 in this paper. Figure S4 shows a typical learning curve of
the MSE loss in training and validation datasets for different
learning steps in training an optimal model. Such diagnostics
can be used to avoid the model overfitting.

2.5 The importance of the model input feature

Permutation feature importance is a technique used to assess
the significance of each input feature in a machine learning
model (Altmann et al., 2010). The core idea is to evaluate
the impact of each feature on model performance by ran-
domly shuffling its values and observing the resulting change
in the model’s accuracy. In this study, for each input feature
of the GeoNet, we iteratively shuffle its value independently
while keeping other features unchanged and then observe the
model prediction with the modified input. The difference in
the model prediction performance between using the origi-
nal and shuffling input quantifies the feature’s importance.
Here, we measure the relative importance of each input fea-
ture using the metric of 1−R2, due to its good standard-
ized and indicative ability (Zhang et al., 2022). Generally,
a larger performance drop indicates greater importance, as
the model heavily relies on that feature for predictions. Con-
versely, smaller drops or increases suggest that the feature
may be less crucial or redundant. By permuting the input
feature array based on the different spatial and temporal do-
mains, we can gain a deeper understanding of how feature
importance varies spatially and temporally. For example, the
relative importance of one meteorology variable may vary
with different diurnal, weekly, and monthly cycles, revealing
the variability in its impact on the predicted NO2 levels.

3 Results and discussion

3.1 Model performance

Based on the GeoNet model and necessary input data (refer
to Sect. 2), we have achieved preliminary predictions of near-
surface NO2 concentration with full spatial coverage and a
spatial resolution of 0.1° over eastern China at 4 h intervals
over the next 24 h. In this study, we first tested the impact of
using reanalysis and forecast meteorology datasets and filling
in missing values in satellite observation data on the model
predictions. The reanalysis datasets usually have higher pre-
cision than the forecast. Previous studies revealed that the
accuracy of the information on meteorology and chemical
composition significantly affects the performance of machine
learning models in estimating air pollutant concentrations
(Zuo et al., 2023; Wang et al., 2024). Due to the shielding
effect of clouds, a considerable proportion of missing values
may even exist in satellite NO2 observations. Recent big-data
research on air quality has usually required the gap-filling of
missing satellite data before inputting them into the machine
learning model by either spatial interpolation or regression
techniques (Kim et al., 2021). We tested three methods for
handling missing data, such as setting them to a fill value
of zero or replacing them with real-time CAMS-simulated
NO2 or WRF-Chem-simulated NO2 results (not real-time,
but with higher precision).

The comparison results for the validation datasets indi-
cate that the scenario using CAMS meteorology datasets
and replacing missing satellite NO2 data with fill values
(Fig. 2c) corresponds to a modest NO2 prediction perfor-
mance with R2

= 0.68 and RMSE= 12.26 µg m−3. In con-
trast, the configuration scenario using ERA5 reanalysis mete-
orology and imputing with WRF-Chem simulations (Fig. 2a)
corresponds to the best prediction performance of R2

= 0.69
and RMSE= 11.88 µg m−3. This may indicate that the im-
portance of the imputation of missing satellite data may
be diminished by cloud mask inputs, especially since the
model can extract informative features from spatial and
temporal neighboring inputs. To compromise between the
performance of real time and accuracy, we selected the
configuration scenario using CAMS meteorology and im-
puting with CAMS NO2 (Fig. 2d) for subsequent discus-
sion and operational forecasting, with an R2

= 0.68 and
RMSE= 12.31 µg m−3. In summary, using higher-precision
meteorology and filling missing NO2 data enhances the
model’s prediction accuracy with the validation dataset, but
to a rather limited extent. This suggests that, unlike previous
machine learning techniques, GeoNet can effectively adapt to
three-dimensional inputs of varying accuracy and type, fully
explore the spatiotemporal correlation of data features, and
demonstrate strong model generalization capabilities.

Figures S5–S8 provide an overview of the major metrics
(e.g., R2, RMSE, MAE, and MAPE) of GeoNet prediction
performance varying with prediction hours from t + 4 h to
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Figure 2. The GeoNet prediction performance of the surface NO2 concentration compared to the validation samples, based on different
input datasets of meteorology and atmospheric composition: (a) use ERA5 meteorology and fill satellite measurement gaps with WRF-
Chem-simulated NO2; (b) use ERA5 meteorology and a NO2 fill value of zero for over gaps; (c) use CAMS meteorology and a NO2 fill
value of zero for gaps; (d) use CAMS meteorology and CAMS NO2. The left plot shows the scatter comparisons between GeoNet predictions
and site observations, while the right plot shows the bias distribution between the two.

t + 24 h in different months. The results indicate that the
model exhibits a higher correlation with NO2 forecasting
during the spring and winter seasons compared to the sum-
mer, while the RMSE errors show the opposite trend. This
could be attributed to much higher NO2 pollution levels in
winter months. Additionally, GeoNet’s NO2 prediction er-
rors gradually increase during the next 24 h, particularly after
t + 20 h. This is primarily due to the short lifetime of atmo-
spheric NO2, leading to a diminishing constraint from his-
torical observational data on future NO2 predictions. Similar
phenomena are also observed in machine learning or model-
assisted weather forecasts (Andersson et al., 2021).

To assess the GeoNet model’s performance for short-term
pollution events, we compared it with near-surface NO2
from CAMS forecasts and in situ observations from CNEMC
ground stations. Figure S9 illustrates the daily time series of
t+4 h NO2 from GeoNet, CAMS, and CNEMC for three typ-
ical sites in Beijing, Shanghai, and Guangzhou in 2021. As
shown from the plot, NO2 predictions by both GeoNet and
CAMS generally agreed with the variation trends of CNEMC
measurements. However, CAMS forecasts systematically
overestimate the surface NO2 concentration by 100 %, possi-
bly resulting from the biases in the NOx emission inventory
(Douros et al., 2023). Compared to CAMS, the GeoNet pre-
diction closely aligns with the ground-truth observations at
CNEMC sites over eastern China, with an overall R2> 0.5

and mean bias< 5 µg m−3 for polluted regions (see Figs. S10
and S11, respectively).

3.2 Main factors in NO2 forecasting and their
implications

Previous physics-based numeric models of air quality predic-
tion, e.g., the CAMS global forecast model and the regional
WRF-CMAQ model (Liu et al., 2023; Kumar et al., 2021;
Kuhn et al., 2024), can simulate the physical and chemical
atmospheric processes (such as advection, diffusion, depo-
sition, and chemical reactions) by solving the atmospheric
equations. Recent data assimilation techniques further take
real-time monitoring data from satellite and ground-based
platforms as model constraints to better predict air quality
variables (Inness et al., 2022). Compared with physics-based
models, “black box” models such as the deep learning tech-
nique usually lack interpretability and explainability (Zhang
and Zhu, 2018). This hinders the understanding and implica-
tions for predicting air quality variables such as NO2. Here,
we measure the relative importance of each input feature on
the NO2 forecast accuracy by iteratively permuting the input
array and observing its influences on the model prediction.

Figure 3a presents the relative importance (1−R2) of dif-
ferent input features varying with prediction hour steps from
t+ 4 h to t + 24 h. The geostationary satellite NO2 measure-
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Figure 3. (a) The overall relative importance of different input features such as wind, surface pressure, satellite NO2, and cloud mask in
GeoNet NO2 forecasting, varying with different hour steps from t + 4 h to t + 24 h. (b) The spatial distribution of the relative importance of
satellite NO2 measurements in the GeoNet NO2 forecast in 2021.

ments play the biggest role in predicting surface NO2 levels
of the next day, although it degrades after t + 8 h. Other me-
teorological input features also show a major impact on NO2
prediction performance. The significance of the different in-
put variables remained generally consistent across seasons,
with minor variations (as shown in Fig. S12). By permutating
the input array for each ground pixel, Fig. 3b derived the spa-
tial distribution of the relative importance of geostationary
satellite NO2 in the predicting performance. Overall, satel-
lite NO2 has a higher impact in densely populated areas ex-
periencing severe air pollution, such as the Pearl River Delta,
Yangtze River Delta, and Jianghuai Plain, than in western
China. Such results highlight the underappreciated role of
satellite NO2 measurements with high spatial and temporal
coverage in air pollution forecasts.

3.3 NO2 pollution episodes and health exposure
forecast

Beyond its prediction accuracy, GeoNet exhibits a pro-
nounced advantage in spatial coverage and resolution, al-
lowing finer-scale details in the pollutant distribution to be
captured. Illustrated in Fig. 4, GeoNet demonstrates remark-
able performance in predicting spatial nuances of NO2 pol-
lution, particularly when contrasted with ground-based and
satellite observations. During a typical winter NO2 pollu-
tion event (as shown in Fig. 5), GeoNet accurately simulates
a significant decrease in concentrations at 11:00 and 15:00
local solar time, probably led by intense photochemical ac-
tivity in the daytime, coincident with ground-based obser-
vations. It also outperforms CAMS in predicting NO2 vari-

ations throughout the day. The GeoNet model also retains
the distributional differences in NO2 concentrations between
urban and rural areas, consistent with emission source char-
acteristics and satellite observations. The suboptimal perfor-
mance of CAMS predictions can be attributed to insufficient
observational constraints and the use of outdated emission
inventories (Douros et al., 2023). In the European region,
the assimilation of TROPOMI observations into CAMS fore-
casts significantly improves the simulation accuracy of near-
surface NO2 concentrations and tropospheric column densi-
ties (Inness et al., 2019). Neural network methods, similar
to GeoNet, could be used to correct and downscale forecast
results by existing models (Baghanam et al., 2024). This ap-
proach holds promise for achieving operational air quality
forecasts that balance efficiency and accuracy.

In this study, we used a simplified linearized risk model for
the short-term NO2 exposure (Meng et al., 2021; Zhang et al.,
2022) to calculate the distribution of all-cause mortality risks
based on GeoNet NO2 predictions (see Fig. 6). Short-term
NO2 exposure leads to remarkable regional differences in
all-cause mortality, which are mainly concentrated in highly
polluted and densely populated urban areas. For both urban
and suburban locations in Beijing (see Fig. 6c–d), GeoNet-
based NO2 pollution exposure predictions are more consis-
tent with actual in situ observations than the CAMS fore-
casts. Current air quality health index forecasting based on
limited station data has significant gaps, making it difficult
to meet the refined needs for different populations in ur-
ban, suburban, and rural areas. Integrating GeoNet forecasts
based on hourly geostationary satellite observations can sup-
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Figure 4. The comparisons of annual surface NO2 concentrations from GeoNet, CAMS, and CNEMC, respectively (a–c), as well as the
tropospheric NO2 column observations from GEMS and TROPOMI over eastern China in 2021 (d–e).

Figure 5. The spatial distribution comparisons of surface NO2 concentration between (a) GeoNet prediction at the original resolution of 0.1°,
(b) GeoNet prediction resampled to the CAMS resolution of 0.4°, (c) CAMS prediction, and (d) ground-based CNEMC site measurements.
Note that the results are presented for different continuing local hours (labeled text in the subplot) on 23 November 2021.

port spatially comprehensive and fine-scale air quality health
risk prediction. This, in turn, guides the management of the
risks of air-pollution-exposure-related diseases in sensitive
populations and communities.

4 Conclusion

The GeoNet model utilizes the unprecedented hourly air
quality observations from geostationary satellites and re-
solves nonlinear associations in spatiotemporal proximity
across multiple data sources. It achieves seamless short-term
regional air quality predictions, exhibiting significant perfor-
mance advantages over existing machine learning air qual-
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Figure 6. Mortality risk of short-term NO2 exposure based on the GeoNet prediction on 23 November 2021. (a) Mean mortality due to
the predicted NO2 exposure in eastern China, (b) a zoom-in map over Beijing and its neighboring area. Panels (c) and (d) are comparisons
of mortality estimation over Beijing’s urban and rural regions (the rectangular areas presented in b), respectively, based on different NO2
exposure predictions among GeoNet, CAMS, and CNEMC.

ity prediction models. To strike a balance between real-time
and accuracy requirements, we evaluated the impact of us-
ing reanalysis- and forecast-based meteorology datasets, as
well as imputing the missing values of satellite NO2. The
findings reveal that the GeoNet model demonstrates robust
generalization across diverse datasets, with minimal fluctua-
tions in prediction performance. Overall, the model achieves
an RMSE of 12.31 µg m−3 and an R2 of 0.68 when predict-
ing NO2 concentrations every 4 h for the next 24 h. However,
validation accuracy notably diminishes after t + 16 h within
the next 24 h, with stronger predictive correlations observed
in seasons characterized by severe pollution, such as spring
and winter, compared to summer. The variation in the model
forecasting performance also shows that accurate prediction
for longer time windows and heavy-pollution events is still
a major difficulty. This may be due to the high level of un-
certainty in emissions and meteorology. In the future, a com-
bination of higher resolution and more accurate multi-source
data constraints, as well as machine learning models coupled
with physical atmospheric mechanisms, may be needed to
improve the existing forecasts.

Compared to traditional chemical model forecasts and data
assimilation predictions, the GeoNet model handles various
data sources, including meteorological simulations and air
quality observations, and more accurately captures spatial in-

tricacies of air pollution evolution. The GeoNet framework
elucidated in this study forecasts short-term, near-surface
NO2 concentrations and demonstrates transferable learning
potentials for predicting other pollutants. This work also has
important implications for the prediction of near-surface O3
and particulate matter. For example, the integration of us-
ing vertical O3 profiles from the GEMS satellite, in particu-
lar near-surface layer concentrations, and their joint observa-
tions of important O3 precursors, including NO2 and HCHO,
is expected to significantly improve the uncertainty in exist-
ing estimates of near-surface air pollution. This study under-
scores the pivotal role of next-generation stationary satellite
observations of air pollution constituents in air quality fore-
casting, with the potential to advance operational air quality
forecasting and mitigate associated health risks by integrat-
ing machine learning technologies.

Code and data availability. The GEMS NO2 v2.0 data are
available from the National Institute of Environmental Research
(NIER) of South Korea (https://nesc.nier.go.kr/en/html/index.do,
last access: 10 September 2023, NIER, 2023). We downloaded
the NO2 measurements from the CNEMC real-time air qual-
ity platform (https://air.cnemc.cn:18007/, last access: 8 June
2023, CNEMC, 2023). ERA5 reanalysis meteorological data
are obtained from the European Centre for Medium-Range
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Weather Forecasts (https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2023). CAMS forecasts of meteorological and
atmospheric NO2 datasets are retrieved from the CAMS Atmo-
sphere Data Store (https://ads.atmosphere.copernicus.eu/datasets/
cams-global-atmospheric-composition-forecasts?tab=download,
Copernicus Atmosphere Monitoring Service, 2023). The source
codes of the GeoNet model, surface NO2 prediction, and
necessary input data can be obtained from Chengxin Zhang
(zcx2011@ustc.edu.cn) upon reasonable request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-25-759-2025-supplement.
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