Research article 26 Jul 2019
Research article | 26 Jul 2019
Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project
Jianjun Liu and Zhanqing Li
Related authors
Hongru Yan, Zhanqing Li, Jianping Huang, Maureen Cribb, and Jianjun Liu
Atmos. Chem. Phys., 14, 7113–7124, https://doi.org/10.5194/acp-14-7113-2014, https://doi.org/10.5194/acp-14-7113-2014, 2014
Jianjun Liu and Zhanqing Li
Atmos. Chem. Phys., 14, 471–483, https://doi.org/10.5194/acp-14-471-2014, https://doi.org/10.5194/acp-14-471-2014, 2014
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Rongmin Ren, Zhanqing Li, Peng Yan, Yuying Wang, Hao Wu, Wei Wang, Xiao'ai Jin, Yanan Li, Dongmei Zhang, and Maureen Cribb
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1238, https://doi.org/10.5194/acp-2020-1238, 2021
Preprint under review for ACP
Short summary
Short summary
We analyzed the effect of the proportion of components making up the chemical composition of aerosols on f(RH) in southern Beijing in 2019. Nitrate played a more significant role in affecting f(RH) than sulfate. The ratio of the sulfate mass fraction to the nitrate mass fraction (mostly higher than ~4) was a sign of the deliquescence of aerosol. A piecewise parameterized scheme was proposed, which could better describe deliquescence and reduce uncertainties in simulating aerosol hygroscopicity.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Lin Sun, Wenhao Xue, and Runze Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1277, https://doi.org/10.5194/acp-2020-1277, 2021
Preprint under review for ACP
Short summary
Short summary
This study developed a space-time Light gradient boosting machine (STLG) model and derived the high-temporal-resolution (1 hour) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8/AHI aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Jiwen Fan, Yuwei Zhang, Zhanqing Li, Jiaxi Hu, and Daniel Rosenfeld
Atmos. Chem. Phys., 20, 14163–14182, https://doi.org/10.5194/acp-20-14163-2020, https://doi.org/10.5194/acp-20-14163-2020, 2020
Short summary
Short summary
We investigate the urbanization-induced land and aerosol impacts on convective clouds and precipitation over Houston. We find that Houston urbanization notably enhances storm intensity and precipitation, with the anthropogenic aerosol effect more significant. Urban land effect strengthens sea-breeze circulation, leading to a faster development of warm cloud into mixed-phase cloud and earlier rain. The anthropogenic aerosol effect accelerates the development of storms into deep convection.
Pengguo Zhao, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou
Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, https://doi.org/10.5194/acp-20-13379-2020, 2020
Short summary
Short summary
We discussed the different aerosol effects on lightning in plateau and basin regions of Sichuan, southwestern China. In the plateau area, the aerosol concentration is low, and aerosols (via microphysical effects) inhibit the process of warm rain and stimulate convection and lightning activity. In the basin region, however, aerosols tend to show a significant radiative effect (reducing the solar radiation reaching the surface by absorbing and scattering) and inhibit the lightning.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-845, https://doi.org/10.5194/acp-2020-845, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height, and is modulated by varying thermodynamic, dynamical and humidity conditions during the day.
Wenchao Han, Zhanqing Li, Fang Wu, Yuwei Zhang, Jianping Guo, Tianning Su, Maureen Cribb, Jiwen Fan, Tianmeng Chen, Jing Wei, and Seoung-Soo Lee
Atmos. Chem. Phys., 20, 6479–6493, https://doi.org/10.5194/acp-20-6479-2020, https://doi.org/10.5194/acp-20-6479-2020, 2020
Short summary
Short summary
Observational data and model simulation were used to analyze the daytime urban heat island intensity (UHII) under polluted and clean conditions in China. We found that aerosols reduce the UHII in summer but increase the UHII in winter. Two mechanisms, the aerosol radiative effect (ARE) and the aerosol dynamic effect (ADE), behave differently in summer and winter. In summer, the UHII is mainly affected by the ARE, and the ADE is weak, and the opposite is the case in winter.
Tianning Su, Zhanqing Li, Chengcai Li, Jing Li, Wenchao Han, Chuanyang Shen, Wangshu Tan, Jing Wei, and Jianping Guo
Atmos. Chem. Phys., 20, 3713–3724, https://doi.org/10.5194/acp-20-3713-2020, https://doi.org/10.5194/acp-20-3713-2020, 2020
Short summary
Short summary
We study the role of aerosol vertical distribution in thermodynamic stability and PBL development. Under different aerosol vertical structures, the diurnal cycles of PBLH and PM2.5 show distinct characteristics. Large differences in the heating rate affect atmospheric buoyancy and stability differently under different aerosol structures. As a result, the aerosol–PBL interaction can be strengthened by the inverse aerosol structure and potentially neutralized by the decreasing structure.
Seoung Soo Lee, George Kablick III, Zhanqing Li, Chang Hoon Jung, Yong-Sang Choi, Junshik Um, and Won Jun Choi
Atmos. Chem. Phys., 20, 3357–3371, https://doi.org/10.5194/acp-20-3357-2020, https://doi.org/10.5194/acp-20-3357-2020, 2020
Short summary
Short summary
This paper examines a thunderstorm-type cloud that is triggered by wildfire. This paper shows that this cloud has a substantial impact on air components such as water vapor that act as a global warming agent together with carbon dioxide. This paper also shows that that impact is strongly dependent on fire intensity. This raises a possibility that clouds, which are triggered by fire, act as a modulator of climate changes and this function as a modulator is altered by how intense fire is.
Jing Wei, Zhanqing Li, Maureen Cribb, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, https://doi.org/10.5194/acp-20-3273-2020, 2020
Short summary
Short summary
This study introduced an enhanced space–time extremely randomized trees (STET) approach to improve the 1 km resolution ground-level PM2.5 estimates across China using the remote sensing technology. The STET model shows high accuracy and strong predictive power and appears to outperform most models reported by previous studies. Thus, it is of great importance for future air pollution studies at medium- or small-scale areas and will be applied to generate the historical PM2.5 dataset across China.
Xinxin Fan, Jieyao Liu, Fang Zhang, Lu Chen, Don Collins, Weiqi Xu, Xiaoai Jin, Jingye Ren, Yuying Wang, Hao Wu, Shangze Li, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 20, 915–929, https://doi.org/10.5194/acp-20-915-2020, https://doi.org/10.5194/acp-20-915-2020, 2020
Short summary
Short summary
Aerosol effects on visibility and climate are influenced by their hygroscopicity. By contrasting data from two techniques between summer and winter in Beijing, we investigate the effect of aerosol aging, mixing state, and local sources on its hygroscopicity. We revealed that inappropriate use of the density of BC and organics results in large uncertainty in calculating aerosols hygroscopicity. Our results are helpful for parameterization in models.
Xiaoai Jin, Yuying Wang, Zhanqing Li, Fang Zhang, Weiqi Xu, Yele Sun, Xinxin Fan, Guangyu Chen, Hao Wu, Jingye Ren, Qiuyan Wang, and Maureen Cribb
Atmos. Chem. Phys., 20, 901–914, https://doi.org/10.5194/acp-20-901-2020, https://doi.org/10.5194/acp-20-901-2020, 2020
Short summary
Short summary
In this study the aerosol liquid water content (ALWC) is determined from aerosol hygroscopic growth factor (GF) measurement (ALWCHTDMA) and also simulated by the ISORROPIA II thermodynamic model (ALWCISO). We found that ALWC contributed by organics (ALWCOrg) accounts for 30 % ± 22 % of the total ALWC in winter in Beijing. A case study reveals that ALWCOrg plays an important role in the formation of secondary aerosols through multiphase reactions at the initial stage of a heavy-haze episode.
Fei Wang, Zhanqing Li, Qi Jiang, Gaili Wang, Shuo Jia, Jing Duan, and Yuquan Zhou
Atmos. Chem. Phys., 19, 14967–14977, https://doi.org/10.5194/acp-19-14967-2019, https://doi.org/10.5194/acp-19-14967-2019, 2019
Short summary
Short summary
Though many laboratory, modeling, and field experimental studies on cloud seeding have been conducted for more than a half-century, assessing the effectiveness of cloud seeding is still very challenging due to the notorious difficulties in gaining convincing scientific evidences. The goals of this study are to evaluate any consequence of aircraft hygroscopic seeding and to develop a feasible method for analyzing the cloud seeding effect for stratocumulus clouds.
Yang Wang, Steffen Dörner, Sebastian Donner, Sebastian Böhnke, Isabelle De Smedt, Russell R. Dickerson, Zipeng Dong, Hao He, Zhanqing Li, Zhengqiang Li, Donghui Li, Dong Liu, Xinrong Ren, Nicolas Theys, Yuying Wang, Yang Wang, Zhenzhu Wang, Hua Xu, Jiwei Xu, and Thomas Wagner
Atmos. Chem. Phys., 19, 5417–5449, https://doi.org/10.5194/acp-19-5417-2019, https://doi.org/10.5194/acp-19-5417-2019, 2019
Short summary
Short summary
A MAX-DOAS instrument was operated to derive tropospheric vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols in the central western North China Plain in May and June 2016. The MAX-DOAS results are verified by comparisons with a collocated Raman lidar, overpass aircraft measurements, a sun photometer and in situ measurements. The contributions of regional transports and local emissions to the pollutants are evaluated based on case studies and statistic analysis.
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-248, https://doi.org/10.5194/acp-2019-248, 2019
Revised manuscript not accepted
Short summary
Short summary
We conducted aircraft measurements of air pollution in the North China Plain. Concentrations of air pollutants higher than the air quality standards were observed. Our modeling study indicates that the rate of ozone (one major air pollutant) production is determined by volatile organic compounds (VOCs), which is confirmed by satellite observations. Currently, VOCs are not well regulated in China, so this study suggests the future direction of control measures to improve air quality in China.
Cheng Yuan, William K. M. Lau, Zhanqing Li, and Maureen Cribb
Atmos. Chem. Phys., 19, 1901–1913, https://doi.org/10.5194/acp-19-1901-2019, https://doi.org/10.5194/acp-19-1901-2019, 2019
Short summary
Short summary
Using MERRA-2 reanalysis daily data from 2001 to 2015, we found that during strong South Asian summer monsoon years, the Asian monsoon anticyclone is more expansive and shifted northward. All the CO, carbonaceous aerosols and dust are found to be more abundant in the Asian Tropopause Aerosol Layer (ATAL). ATAL trends are associated with increasing strength of the AMA, with earlier and enhanced vertical transport of ATAL constituents by enhanced overshooting convection over the transport regions.
Jun Chen, Zhanqing Li, Min Lv, Yuying Wang, Wei Wang, Yingjie Zhang, Haofei Wang, Xing Yan, Yele Sun, and Maureen Cribb
Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019, https://doi.org/10.5194/acp-19-1327-2019, 2019
Short summary
Short summary
The hygroscopic growth function of aerosol particles is derived from Raman lidar, whose dependence on aerosol chemical composition is investigated using data from an aerosol chemical speciation monitor (ACSM) and a hygroscopic tandem differential mobility analyzer (H-TDMA) deployed in China. Two distinct cases were chosen with marked differences in their hygroscopic growth, which was fitted by the Kasten model. The differences were attributed to different amounts of chemical species.
Tianning Su, Zhanqing Li, and Ralph Kahn
Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, https://doi.org/10.5194/acp-18-15921-2018, 2018
Short summary
Short summary
Surface particulate concentration has often been estimated from column-integrated aerosol optical depth (AOD). Their relationship is affected by various factors, such as the planetary layer height, meteorology (atmospheric stability, wind, relative humidity, etc.), and topography, which are investigated thoroughly using a combination of ~1500 surface station datasets, two ground-based lidars, and CALIPSO space-based lidar measurements made across China. Improved estimation of PM2.5 is achieved.
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Jianping Guo, Huan Liu, Zhanqing Li, Daniel Rosenfeld, Mengjiao Jiang, Weixin Xu, Jonathan H. Jiang, Jing He, Dandan Chen, Min Min, and Panmao Zhai
Atmos. Chem. Phys., 18, 13329–13343, https://doi.org/10.5194/acp-18-13329-2018, https://doi.org/10.5194/acp-18-13329-2018, 2018
Short summary
Short summary
Objective analysis has been used to discriminate between the local- and synoptic-scale precipitations based on wind and pressure fields at 500 hPa. Aerosol is found to be linked with changes in the vertical structure of precipitation, depending on precipitation regimes. There has been some success in separating aerosol and meteorological influences on precipitation.
Qianqian Wang, Zhanqing Li, Jianping Guo, Chuanfeng Zhao, and Maureen Cribb
Atmos. Chem. Phys., 18, 12797–12816, https://doi.org/10.5194/acp-18-12797-2018, https://doi.org/10.5194/acp-18-12797-2018, 2018
Short summary
Short summary
Based on 11-year data of lightning flashes, aerosol optical depth (AOD) and composion, and meteorological variables, we investigated the roles of aerosol and meteorological variables in lightning. Pronounced differences in lightning were found between clean and polluted conditions. Systematic changes of boomerang shape were found in lightning frequency with AOD, with a turning point around AOD = 0.3, beyond which lightning activity is saturated for smoke aerosols but always suppressed by dust.
Yuying Wang, Zhanqing Li, Yingjie Zhang, Wei Du, Fang Zhang, Haobo Tan, Hanbing Xu, Tianyi Fan, Xiaoai Jin, Xinxin Fan, Zipeng Dong, Qiuyan Wang, and Yele Sun
Atmos. Chem. Phys., 18, 11739–11752, https://doi.org/10.5194/acp-18-11739-2018, https://doi.org/10.5194/acp-18-11739-2018, 2018
Short summary
Short summary
Very different aerosol hygroscopicities and mixing states were found at these sites in the North China Plain. The PDF for 40–200 nm particles showed the particles were highly aged and internally mixed at Xingtai because of high pollution and strong photochemical reactions. A good proxy for the chemical comical composition (kappa = 0.31) in calculating CCN concentration was found. Importantly, our study investigated the influence of industrial emissions on the aerosol properties.
Fei Wang, Zhanqing Li, Xinrong Ren, Qi Jiang, Hao He, Russell R. Dickerson, Xiaobo Dong, and Feng Lv
Atmos. Chem. Phys., 18, 8995–9010, https://doi.org/10.5194/acp-18-8995-2018, https://doi.org/10.5194/acp-18-8995-2018, 2018
Short summary
Short summary
Aerosol optical profiles are characterized for the first time over the North China Plain by aircraft measurements. Statistical summaries of the vertical distributions of aerosol optical properties focused on four target areas in the NCP region. Three typical PBL structures were found and the aerosol scattering coefficients showed different correlations with ambient RH during the field campaign. The air mass back trajectories of three PBL structures were also discussed.
Jingye Ren, Fang Zhang, Yuying Wang, Don Collins, Xinxin Fan, Xiaoai Jin, Weiqi Xu, Yele Sun, Maureen Cribb, and Zhanqing Li
Atmos. Chem. Phys., 18, 6907–6921, https://doi.org/10.5194/acp-18-6907-2018, https://doi.org/10.5194/acp-18-6907-2018, 2018
Jungbin Mok, Nickolay A. Krotkov, Omar Torres, Hiren Jethva, Zhanqing Li, Jhoon Kim, Ja-Ho Koo, Sujung Go, Hitoshi Irie, Gordon Labow, Thomas F. Eck, Brent N. Holben, Jay Herman, Robert P. Loughman, Elena Spinei, Seoung Soo Lee, Pradeep Khatri, and Monica Campanelli
Atmos. Meas. Tech., 11, 2295–2311, https://doi.org/10.5194/amt-11-2295-2018, https://doi.org/10.5194/amt-11-2295-2018, 2018
Short summary
Short summary
Measuring aerosol absorption from the shortest ultraviolet (UV) to the near-infrared (NIR) wavelengths is important for studies of climate, tropospheric photochemistry, human health, and agricultural productivity. We estimate the accuracy and demonstrate consistency of aerosol absorption retrievals from different instruments, after accounting for spectrally varying surface albedo and gaseous absorption.
Tianyi Fan, Xiaohong Liu, Po-Lun Ma, Qiang Zhang, Zhanqing Li, Yiquan Jiang, Fang Zhang, Chuanfeng Zhao, Xin Yang, Fang Wu, and Yuying Wang
Atmos. Chem. Phys., 18, 1395–1417, https://doi.org/10.5194/acp-18-1395-2018, https://doi.org/10.5194/acp-18-1395-2018, 2018
Short summary
Short summary
We found that 22–28 % of the low AOD bias in eastern China simulated by the Community Atmosphere Model version 5 can be improved by using a new emission inventory. The concentrations of primary aerosols are closely related to the emission, while the seasonal variations of secondary aerosols depend more on atmospheric processes. This study highlights the importance of improving both the emission and atmospheric processes in modeling the atmospheric aerosols and their radiative effects.
Mengjiao Jiang, Jinqin Feng, Zhanqing Li, Ruiyu Sun, Yu-Tai Hou, Yuejian Zhu, Bingcheng Wan, Jianping Guo, and Maureen Cribb
Atmos. Chem. Phys., 17, 13967–13982, https://doi.org/10.5194/acp-17-13967-2017, https://doi.org/10.5194/acp-17-13967-2017, 2017
Short summary
Short summary
Aerosol–cloud interactions have been recognized as playing an important role in precipitation. As a benchmark evaluation of model results that exclude aerosol effects, the operational precipitation forecast (before any aerosol effects included) is evaluated using multiple datasets with the goal of determining if there is any link between the model bias and aerosol loading. The forecast model overestimates light and underestimates heavy rain. Aerosols suppress light rain and enhance heavy rain.
Zipeng Dong, Zhanqing Li, Xing Yu, Maureen Cribb, Xingmin Li, and Jin Dai
Atmos. Chem. Phys., 17, 7997–8009, https://doi.org/10.5194/acp-17-7997-2017, https://doi.org/10.5194/acp-17-7997-2017, 2017
Short summary
Short summary
Opposite trends in aerosol loading between the lower and upper planetary boundary layer are found on a wide range of timescales and from different types of data acquired by various platforms in China. The reversal trend is consistent with the strong vertical gradients in the aerosol-induced atmospheric heating rate that unevenly modifies the atmospheric temperature profile and alters the stability differently. The findings have multiple implications in understanding and combating air pollution.
Wei Du, Jian Zhao, Yuying Wang, Yingjie Zhang, Qingqing Wang, Weiqi Xu, Chen Chen, Tingting Han, Fang Zhang, Zhanqing Li, Pingqing Fu, Jie Li, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 17, 6797–6811, https://doi.org/10.5194/acp-17-6797-2017, https://doi.org/10.5194/acp-17-6797-2017, 2017
Short summary
Short summary
We conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing. The vertical differences strongly depend on particle sizes, with accumulation-mode particles being highly correlated at the two heights. We further demonstrated that regional emission controls have a dominant impact on accumulation-mode particles, while the influences on Aitken particles were much smaller due to the enhanced NPF events.
Yuying Wang, Fang Zhang, Zhanqing Li, Haobo Tan, Hanbing Xu, Jingye Ren, Jian Zhao, Wei Du, and Yele Sun
Atmos. Chem. Phys., 17, 5239–5251, https://doi.org/10.5194/acp-17-5239-2017, https://doi.org/10.5194/acp-17-5239-2017, 2017
Short summary
Short summary
A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period. By comparison we found aerosol particles became more hydrophobic and volatile due to the emission control measures.
Jian Zhao, Wei Du, Yingjie Zhang, Qingqing Wang, Chen Chen, Weiqi Xu, Tingting Han, Yuying Wang, Pingqing Fu, Zifa Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 17, 3215–3232, https://doi.org/10.5194/acp-17-3215-2017, https://doi.org/10.5194/acp-17-3215-2017, 2017
Short summary
Short summary
We conducted aerosol particle composition measurements at ground level and 260 m with two aerosol mass spectrometers in Beijing during the 2015 China Victory Day parade. Our results showed a stronger impact of emission controls on inorganic aerosol than OA. A larger decrease in more oxidized SOA than the less oxidized one during the control period was also observed. Our results indicate that emission controls and the changes in meteorological conditions have affected SOA formation mechanisms.
Yucong Miao, Jianping Guo, Shuhua Liu, Huan Liu, Zhanqing Li, Wanchun Zhang, and Panmao Zhai
Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, https://doi.org/10.5194/acp-17-3097-2017, 2017
Short summary
Short summary
Three synoptic patterns associated with heavy aerosol pollution in Beijing were identified using an objective classification approach. Relationships between synoptic patterns, aerosol pollution, and boundary layer height in Beijing during summer were revealed as well. Further, factors/mechanisms leading to the low BLHs in Beijing were unraveled. The key findings have implications for understanding the crucial roles that meteorological factors play in forecasting aerosol pollution in Beijing.
Jianping Guo, Yucong Miao, Yong Zhang, Huan Liu, Zhanqing Li, Wanchun Zhang, Jing He, Mengyun Lou, Yan Yan, Lingen Bian, and Panmao Zhai
Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, https://doi.org/10.5194/acp-16-13309-2016, 2016
Short summary
Short summary
The large-scale PBL climatology from sounding observations is still lacking in China. This work investigated the BLH characterization at diurnal, monthly and seasonal timescales throughout China, showing large geographic and meteorological dependences. BLH is, on average, negatively (positively) associated with the surface pressure and lower tropospheric stability (wind speed and temperature). Cloud tends to suppress the development of the PBL, which has implications for air quality forecasts.
Fang Zhang, Zhanqing Li, Yanan Li, Yele Sun, Zhenzhu Wang, Ping Li, Li Sun, Pucai Wang, Maureen Cribb, Chuanfeng Zhao, Tianyi Fan, Xin Yang, and Qingqing Wang
Atmos. Chem. Phys., 16, 5413–5425, https://doi.org/10.5194/acp-16-5413-2016, https://doi.org/10.5194/acp-16-5413-2016, 2016
F. Zhang, Y. Li, Z. Li, L. Sun, R. Li, C. Zhao, P. Wang, Y. Sun, X. Liu, J. Li, P. Li, G. Ren, and T. Fan
Atmos. Chem. Phys., 14, 13423–13437, https://doi.org/10.5194/acp-14-13423-2014, https://doi.org/10.5194/acp-14-13423-2014, 2014
Short summary
Short summary
Atmospheric aerosol particles acting as CCN are pivotal elements of the hydrological cycle and climate change. In this study, we measured and characterized NCCN in relatively clean and polluted air during the AC3Exp campaign conducted at Xianghe, China, in summer 2013. We found that aerosol particle hygroscopicity and activation are more complex for heavy pollution particles because of the diversity in particle composition and mixing state. We have also shown the possibility of using bulk κc.
Hongru Yan, Zhanqing Li, Jianping Huang, Maureen Cribb, and Jianjun Liu
Atmos. Chem. Phys., 14, 7113–7124, https://doi.org/10.5194/acp-14-7113-2014, https://doi.org/10.5194/acp-14-7113-2014, 2014
Jianjun Liu and Zhanqing Li
Atmos. Chem. Phys., 14, 471–483, https://doi.org/10.5194/acp-14-471-2014, https://doi.org/10.5194/acp-14-471-2014, 2014
T. Logan, B. Xi, X. Dong, Z. Li, and M. Cribb
Atmos. Chem. Phys., 13, 2253–2265, https://doi.org/10.5194/acp-13-2253-2013, https://doi.org/10.5194/acp-13-2253-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations
Satellite retrieval of aerosol combined with assimilated forecast
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models
Aerosol-enhanced high precipitation events near the Himalayan foothills
Optical characterization of pure pollen types using a multi-wavelength Raman polarization lidar
Measurement Report: Determination of aerosol vertical features on different timescales over East Asia based on CATS aerosol products
North African mineral dust sources: new insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters
EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): properties and impact on radiative forcing
Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution
Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
Aerosol Characteristics in the Three Poles of the Earth Observed by CALIPSO
Statistical aerosol properties associated with fire events from 2002 to 2019 along with a case analysis in 2019 over Australia
An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation
Radiative effects of long-range-transported Saharan air layers as determined from airborne lidar measurements
Automated time-height-resolved airmass source attribution for profiling remote sensing applications
Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia
Atmospheric Boundary Layer height estimation from aerosol lidar: a new approach based on morphological image processing techniques
Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign
An EARLINET early warning system for atmospheric aerosol aviation hazards
Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment
Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm
Optical and geometrical aerosol particle properties over the United Arab Emirates
Determination and climatology of the diurnal cycle of the atmospheric mixing layer height over Beijing 2013–2018: lidar measurements and implications for air pollution
First validation of GOME-2/MetOp Absorbing Aerosol Height using EARLINET lidar observations
Site representativity of AERONET and GAW remotely sensed aerosol optical thickness and absorbing aerosol optical thickness observations
Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations
Remote sensing of two exceptional winter aerosol pollution events and representativeness of ground-based measurements
Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI–MODIS
The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect
An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei
Long-term profiling of aerosol light extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia
Satellite mapping of PM2.5 episodes in the wintertime San Joaquin Valley: a “static” model using column water vapor
Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees
Observation of absorbing aerosols above clouds over the South-East Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign
Merging regional and global aerosol optical depth records from major available satellite products
Satellite observations of aerosols and clouds over southern China from 2006 to 2015: analysis of changes and possible interaction mechanisms
Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017
Technical note: A simple method for retrieval of dust aerosol optical depth with polarized reflectance over oceans
How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth
Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations
Detection and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst-type pollen sampler in Finland
Different strategies to retrieve aerosol properties at night-time with the GRASP algorithm
Two-dimensional mineral dust radiative effect calculations from CALIPSO observations over Europe
Investigation of CATS aerosol products and application toward global diurnal variation of aerosols
EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
Satellite inference of water vapour and above-cloud aerosol combined effect on radiative budget and cloud-top processes in the southeastern Atlantic Ocean
Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021, https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
Short summary
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. This is the first study that utilizes the assimilated model forecast of aerosol as an a priori estimate of the retrieval. Aerosol retrievals were improved by effectively incorporating both model and satellite information. By using the assimilated forecast as an a priori estimate, information from previous observations can be propagated to future retrievals, thus leading to better retrieval accuracy.
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021, https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Short summary
Given the current uncertainties in the simulated diurnal variability of global dust mobilization and concentration, observational characterization of the variations in dust mobilization and concentration will provide a valuable benchmark for evaluating and constraining such model simulations. The current study investigates the diurnal cycle of dust loading across the global tropics, subtropics, and mid-latitudes by analyzing aerosol observations from the International Space Station.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020, https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Short summary
We analyze global measurements of aerosol height from fires. A plume rise model reproduces measurements with a low bias in five regions, while a statistical model based on satellite measurements of trace gasses co-emitted from the fires reproduces measurements without bias in eight regions. We propose that the magnitude of the pollutants emitted may impact their height and subsequent downwind transport. Using satellite data allows better modeling of the global aerosol distribution.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Xiaoxia Shang, Elina Giannakaki, Stephanie Bohlmann, Maria Filioglou, Annika Saarto, Antti Ruuskanen, Ari Leskinen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 15323–15339, https://doi.org/10.5194/acp-20-15323-2020, https://doi.org/10.5194/acp-20-15323-2020, 2020
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at a rural forest site in Kuopio, Finland. The depolarization ratio was enhanced when there were pollen grains in the atmosphere, illustrating the potential of lidar to track pollen grains in the atmosphere. The depolarization ratio of pure pollen particles was assessed for birch and pine pollen using a novel algorithm.
Yueming Cheng, Tie Dai, Jiming Li, and Guangyu Shi
Atmos. Chem. Phys., 20, 15307–15322, https://doi.org/10.5194/acp-20-15307-2020, https://doi.org/10.5194/acp-20-15307-2020, 2020
Short summary
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
Sophie Vandenbussche, Sieglinde Callewaert, Kerstin Schepanski, and Martine De Mazière
Atmos. Chem. Phys., 20, 15127–15146, https://doi.org/10.5194/acp-20-15127-2020, https://doi.org/10.5194/acp-20-15127-2020, 2020
Short summary
Short summary
Mineral dust aerosols blown mostly from desert areas are a key player in the climate system. We use a new desert dust aerosol low-altitude concentration data set as well as additional information on the surface state and low-altitude winds to infer desert dust emission and source maps over North Africa. With 9 years of data, we observe a full seasonal cycle of dust emissions, differentiating morning and afternoon/evening emissions and providing a first glance at long-term changes.
Ourania Soupiona, Alexandros Papayannis, Panagiotis Kokkalis, Romanos Foskinis, Guadalupe Sánchez Hernández, Pablo Ortiz-Amezcua, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Papagiannopoulos, Stefanos Samaras, Silke Groß, Rodanthi-Elisavet Mamouri, Lucas Alados-Arboledas, Aldo Amodeo, and Basil Psiloglou
Atmos. Chem. Phys., 20, 15147–15166, https://doi.org/10.5194/acp-20-15147-2020, https://doi.org/10.5194/acp-20-15147-2020, 2020
Short summary
Short summary
51 dust events over the Mediterranean from EARLINET were studied regarding the aerosol geometrical, optical and microphysical properties and radiative forcing. We found δp532 values of 0.24–0.28, LR532 values of 49–52 sr and AOT532 of 0.11–0.40. The aerosol mixing state was also examined. Depending on the dust properties, intensity and solar zenith angle, the estimated solar radiative forcing ranged from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the TOA (cooling effect).
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Mariana Adam, Doina Nicolae, Iwona S. Stachlewska, Alexandros Papayannis, and Dimitris Balis
Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, https://doi.org/10.5194/acp-20-13905-2020, 2020
Short summary
Short summary
Biomass burning events measured by EARLINET are analysed using intensive parameters. The pollution layers are labelled smoke layers if fires were found along the air-mass back trajectory. The number of contributing fires to the smoke measurements is quantified. It is shown that most of the time we measure mixed smoke. The methodology provides three research directions: fires measured by several stations, long-range transport from N. America, and an analysis function of continental sources.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1159, https://doi.org/10.5194/acp-2020-1159, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study investigates the aerosol properties over the pristine regions including the Arctic, Antarctic, and Tibetan Plateau using 13 years CALIPSO aerosol profile products. It shows distinct differences in spatio-temporal variations of AOD and aerosol types over the three study regions. The Arctic and TP are vulnerable to surrounding pollutants, with clear seasonal variations in the transport paths. The results are helpful to understand aerosol radiative forcing and aerosol-cloud interaction.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1139, https://doi.org/10.5194/acp-2020-1139, 2020
Revised manuscript accepted for ACP
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Manuel Gutleben, Silke Groß, Martin Wirth, and Bernhard Mayer
Atmos. Chem. Phys., 20, 12313–12327, https://doi.org/10.5194/acp-20-12313-2020, https://doi.org/10.5194/acp-20-12313-2020, 2020
Short summary
Short summary
Airborne lidar measurements in the vicinity of Barbados are used to investigate radiative effects of long-range-transported Saharan air layers. Derived atmospheric heating rates indicate that observed enhanced water vapor concentrations inside these layers are the main drivers for dust vertical mixing inside the layers. Additionally, they may play a major role for the suppression of subjacent convective cloud development.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-955, https://doi.org/10.5194/acp-2020-955, 2020
Revised manuscript accepted for ACP
Xingchuan Yang, Chuanfeng Zhao, and Yikun Yang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-921, https://doi.org/10.5194/acp-2020-921, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help understand the characteristics of aerosol optical properties in Australia along with their potential climate impacts.
Gemine Vivone, Giuseppe D'Amico, Donato Summa, Simone Lolli, Aldo Amodeo, Daniele Bortoli, and Gelsomina Pappalardo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-857, https://doi.org/10.5194/acp-2020-857, 2020
Revised manuscript accepted for ACP
Li Li, Zhengqiang Li, Wenyuan Chang, Yang Ou, Philippe Goloub, Chengzhe Li, Kaitao Li, Qiaoyun Hu, Jianping Wang, and Manfred Wendisch
Atmos. Chem. Phys., 20, 10845–10864, https://doi.org/10.5194/acp-20-10845-2020, https://doi.org/10.5194/acp-20-10845-2020, 2020
Short summary
Short summary
Dust Aerosol Observation-Kashi (DAO-K) campaign was conducted near the Taklimakan Desert in April 2019 to obtain comprehensive aerosol, atmosphere, and surface parameters. Estimations of aerosol solar radiative forcing by a radiative transfer (RT) model were improved based on the measured aerosol parameters, additionally considering atmospheric profiles and diurnal variations of surface albedo. RT simulations agree well with simultaneous irradiance observations, even in dust-polluted conditions.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-692, https://doi.org/10.5194/acp-2020-692, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
In this study, we integrate the satellite and surface observations to statistically quantify aerosol impacts on low-level warm cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light precipitation events (≤ 1 mm h−1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increases the appearance of the drizzle drops.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Maria Filioglou, Elina Giannakaki, John Backman, Jutta Kesti, Anne Hirsikko, Ronny Engelmann, Ewan O'Connor, Jari T. T. Leskinen, Xiaoxia Shang, Hannele Korhonen, Heikki Lihavainen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020, https://doi.org/10.5194/acp-20-8909-2020, 2020
Short summary
Short summary
Dust optical properties are region-dependent. Saharan, Asian, and Arabian dusts do not pose similar optical properties in terms of lidar ratios; thus, a universal lidar ratio for dust particles will lead to biases. The present study analyses observations over the United Arab Emirates, quantifying the optical and geometrical extents of the aerosol layers in the area, providing at the same time the Arabian dust properties along with chemical analysis of dust samples collected in the region.
Haofei Wang, Zhengqiang Li, Yang Lv, Ying Zhang, Hua Xu, Jianping Guo, and Philippe Goloub
Atmos. Chem. Phys., 20, 8839–8854, https://doi.org/10.5194/acp-20-8839-2020, https://doi.org/10.5194/acp-20-8839-2020, 2020
Short summary
Short summary
Lidar shows good performance in calculating the convective layer height in the daytime and the residual layer height at night, as well as having the potential to describe the stable layer height at night. The MLH seasonal change in Beijing indicates that it is low in winter and autumn and high in spring and summer. From 2014 to 2018, the magnitude of the diurnal cycle of MLH increased year by year. MLH from lidar shows better accuracy than a radiosonde when calculating surface pollution.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Nikolaos Siomos, Dimitrios Balis, Olaf Tuinder, L. Gijsbert Tilstra, Lucia Mona, Gelsomina Pappalardo, and Daniele Bortoli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-601, https://doi.org/10.5194/acp-2020-601, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The aim of this study is to investigate the potential of GOME-2 instrument on board the MetOpA, MetOpB and MetOpC platforms, to deliver accurate geometrical features of lofted aerosol layers. For this purpose, we use archived ground-based lidar data from lidar stations available from European Aerosol Research Lidar Network (EARLINET) database. We show that for, this well-developed and spatially well-spread aerosol layer, most GOME-2 retrievals fall within 1 km of the exactly temporally collocated.
Nick A. J. Schutgens
Atmos. Chem. Phys., 20, 7473–7488, https://doi.org/10.5194/acp-20-7473-2020, https://doi.org/10.5194/acp-20-7473-2020, 2020
Short summary
Short summary
Aerosols are tiny particles in the air that affect human health and climate. To study these particles, measurement networks across the world are used. Each site, however, can only observe the air directly above it, so how representative is this measurement for the wider environment? The sites of a well-known remote sensing network (AERONET) are examined and ranked according to their representativity. This should benefit researchers using this measurement network.
David Painemal, Fu-Lung Chang, Richard Ferrare, Sharon Burton, Zhujun Li, William L. Smith Jr., Patrick Minnis, Yan Feng, and Marian Clayton
Atmos. Chem. Phys., 20, 7167–7177, https://doi.org/10.5194/acp-20-7167-2020, https://doi.org/10.5194/acp-20-7167-2020, 2020
Short summary
Short summary
Aerosol–cloud interactions (ACIs) are the most uncertain aspect of anthropogenic forcing. Although satellites provide the observational dataset for the global ACI quantification, retrievals are limited to vertically integrated quantities (e.g., aerosol optical depth – AOD), which are typically used as an aerosol proxy. This study demonstrates that matching vertically resolved aerosol from CALIOP at the cloud-layer height with satellite cloud retrievals reduces uncertainties in ACI estimates.
Alexandre Baron, Patrick Chazette, and Julien Totems
Atmos. Chem. Phys., 20, 6749–6768, https://doi.org/10.5194/acp-20-6749-2020, https://doi.org/10.5194/acp-20-6749-2020, 2020
Short summary
Short summary
Two major winter aerosol pollution events have been sampled over the Paris area. They correspond to weather conditions with a high-pressure system. We show that during such events the ground-based particle matter content can be related to lidar-derived aerosol extinction coefficient within the atmospheric planetary boundary layer. This opens a new horizon for the monitoring of intense pollution events from space-borne active sensors.
Martin de Graaf, Ruben Schulte, Fanny Peers, Fabien Waquet, L. Gijsbert Tilstra, and Piet Stammes
Atmos. Chem. Phys., 20, 6707–6723, https://doi.org/10.5194/acp-20-6707-2020, https://doi.org/10.5194/acp-20-6707-2020, 2020
Short summary
Short summary
The radiative effect from smoke by wildfires has been found to be much stronger than models predict. The effect is complex; smoke generally cools the climate system by reflecting sunlight but strongly warms the system when it is found over a bright cloud deck. In this paper three different satellite datasets are compared and all three confirm the strong warming of African smoke over the cloud deck in the south-east Atlantic. The intercomparison reduces the uncertainties in the observations.
Wenchao Han, Zhanqing Li, Fang Wu, Yuwei Zhang, Jianping Guo, Tianning Su, Maureen Cribb, Jiwen Fan, Tianmeng Chen, Jing Wei, and Seoung-Soo Lee
Atmos. Chem. Phys., 20, 6479–6493, https://doi.org/10.5194/acp-20-6479-2020, https://doi.org/10.5194/acp-20-6479-2020, 2020
Short summary
Short summary
Observational data and model simulation were used to analyze the daytime urban heat island intensity (UHII) under polluted and clean conditions in China. We found that aerosols reduce the UHII in summer but increase the UHII in winter. Two mechanisms, the aerosol radiative effect (ARE) and the aerosol dynamic effect (ADE), behave differently in summer and winter. In summer, the UHII is mainly affected by the ARE, and the ADE is weak, and the opposite is the case in winter.
Siyuan Zhou, Jing Yang, Wei-Chyung Wang, Chuanfeng Zhao, Daoyi Gong, and Peijun Shi
Atmos. Chem. Phys., 20, 5211–5229, https://doi.org/10.5194/acp-20-5211-2020, https://doi.org/10.5194/acp-20-5211-2020, 2020
Short summary
Short summary
Aerosol–cloud–precipitation interaction is a challenging problem in regional climate. Our study contrasted the observed diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei between clean and polluted days during the 2002–2012 summers. We found the heavy rainfall under pollution has earlier start time, earlier peak time and longer duration, and further found the absorbing aerosols and scattering aerosols play different roles in the heavy rainfall diurnal variation.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 4695–4711, https://doi.org/10.5194/acp-20-4695-2020, https://doi.org/10.5194/acp-20-4695-2020, 2020
Short summary
Short summary
For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities).
Robert B. Chatfield, Meytar Sorek-Hamer, Robert F. Esswein, and Alexei Lyapustin
Atmos. Chem. Phys., 20, 4379–4397, https://doi.org/10.5194/acp-20-4379-2020, https://doi.org/10.5194/acp-20-4379-2020, 2020
Short summary
Short summary
There is a great need to define health-affecting pollution by small particles as “respirable aerosol”. The wintertime San Joaquin Valley experiences severe episodes that need full maps. A few air pollution monitors are set out by agencies in such regions. Satellite data on haziness and daily calibration using the monitors map out improved pollution estimates for the winter of 2012–2013. These show patterns of valuable empirical information about sources, transport, and cleanout of pollution.
Jing Wei, Zhanqing Li, Maureen Cribb, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, https://doi.org/10.5194/acp-20-3273-2020, 2020
Short summary
Short summary
This study introduced an enhanced space–time extremely randomized trees (STET) approach to improve the 1 km resolution ground-level PM2.5 estimates across China using the remote sensing technology. The STET model shows high accuracy and strong predictive power and appears to outperform most models reported by previous studies. Thus, it is of great importance for future air pollution studies at medium- or small-scale areas and will be applied to generate the historical PM2.5 dataset across China.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1176, https://doi.org/10.5194/acp-2019-1176, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys., 20, 457–474, https://doi.org/10.5194/acp-20-457-2020, https://doi.org/10.5194/acp-20-457-2020, 2020
Short summary
Short summary
In this study we analyse aerosol and cloud changes over southern China from 2006 to 2015 and investigate their possible interaction mechanisms. Results show decreasing aerosol loads and increasing liquid cloud cover in late autumn. Further analysis based on various satellite data sets shows consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in the evaporation of cloud droplets, thus increasing cloud amount.
Hongbin Yu, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert C. Levy, Lorraine A. Remer, Steven J. Smith, Tianle Yuan, and Yingxi Shi
Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, https://doi.org/10.5194/acp-20-139-2020, 2020
Short summary
Short summary
Emissions and long-range transport of mineral dust and
combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on interannual variability and possible trends in combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Wenbo Sun, Yongxiang Hu, Rosemary R. Baize, Gorden Videen, Sungsoo S. Kim, Young-Jun Choi, Kyungin Kang, Chae Kyung Sim, Minsup Jeong, Ali Omar, Snorre A. Stamnes, David G. MacDonnell, and Evgenij Zubko
Atmos. Chem. Phys., 19, 15583–15586, https://doi.org/10.5194/acp-19-15583-2019, https://doi.org/10.5194/acp-19-15583-2019, 2019
Short summary
Short summary
Dusts have a significant impact on climate and environment. Detecting dust using satellite instruments is generally conducted by measuring at multiple observation angles due to the uncertainty of the surface reflection. This report shows that the degree of polarization of reflected light can be used for retrieving the optical depth of dust at backscatter angles only, regardless of surface conditions. This simple method is suitable for surveying dust aerosols over oceans with low-cost satellites.
Andrew M. Sayer and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 19, 15023–15048, https://doi.org/10.5194/acp-19-15023-2019, https://doi.org/10.5194/acp-19-15023-2019, 2019
Short summary
Short summary
Data about the Earth are routinely obtained from satellite observations, model simulations, and ground-based or other measurements. These are at different space and timescales, and it is common to average them to reduce gaps and increase ease of use. The question of how the data should be averaged depends on the underlying distribution of the quantity. This study presents a method for determining how to appropriately aggregate data and applies it to data sets about atmospheric aerosol levels.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Mian Chin, Tatyana Lapyonok, Gregory L. Schuster, Fabrice Ducos, David Fuertes, Pavel Litvinov, Lei Li, Anton Lopatin, Qiaoyun Hu, and Benjamin Torres
Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, https://doi.org/10.5194/acp-19-14585-2019, 2019
Short summary
Short summary
Global BC, OC and DD aerosol emissions are inverted from POLDER/PARASOL observations for the year 2010 based on the GEOS-Chem inverse modeling framework. The retrieved emissions are 18.4 Tg yr−1 BC, 109.9 Tg yr−1 OC and 731.6 Tg yr−1 DD, which indicate an increase of 166.7 % for BC and 184.0 % for OC, while a decrease of 42.4 % for DD with respect to GEOS-Chem a priori emission inventories is seen. Global annul mean AOD and AAOD resulting from retrieved emissions are 0.119 and 0.0071 at 550 nm.
Stephanie Bohlmann, Xiaoxia Shang, Elina Giannakaki, Maria Filioglou, Annika Saarto, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 19, 14559–14569, https://doi.org/10.5194/acp-19-14559-2019, https://doi.org/10.5194/acp-19-14559-2019, 2019
Short summary
Short summary
Measurements of the multiwavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at the rural forest site in Vehmasmäki, Finland. High particle depolarization ratios were observed during an intense pollination event of birch pollen occasionally mixed with spruce pollen. Our observations illustrate the potential of the particle depolarization ratio to track pollen grains in the atmosphere.
Jose Antonio Benavent-Oltra, Roberto Román, Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, África Barreto, Anton Lopatin, David Fuertes, Milagros Herrera, Benjamin Torres, Oleg Dubovik, Juan Luis Guerrero-Rascado, Philippe Goloub, Francisco Jose Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019, https://doi.org/10.5194/acp-19-14149-2019, 2019
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different
remote-sensing measurements to obtain the aerosol vertical and column properties, both during the day and at night-time. The column properties are compared with AERONET products, and the vertical properties retrieved by GRASP are compared with in situ measurements at high-altitude stations. As an originality, we proposed three new schemes to retrieve the night-time aerosol properties.
Maria José Granados-Muñoz, Michaël Sicard, Nikolaos Papagiannopoulos, Rubén Barragán, Juan Antonio Bravo-Aranda, and Doina Nicolae
Atmos. Chem. Phys., 19, 13157–13173, https://doi.org/10.5194/acp-19-13157-2019, https://doi.org/10.5194/acp-19-13157-2019, 2019
Short summary
Short summary
The use of satellite data is of great interest for the determination of aerosol radiative forcing at regional or even global scales, as previous studies in the literature are predominantly only valid locally. A methodology to retrieve 2-D dust radiative effects with large spatial and temporal coverage based on combined satellite data from CALIPSO, MODIS and CERES is presented and evaluated against well-established methods based on ground-based lidar measurements, obtaining quite good results.
Logan Lee, Jianglong Zhang, Jeffrey S. Reid, and John E. Yorks
Atmos. Chem. Phys., 19, 12687–12707, https://doi.org/10.5194/acp-19-12687-2019, https://doi.org/10.5194/acp-19-12687-2019, 2019
Short summary
Short summary
The study of the diurnal variation of aerosol optical depth (AOD) and aerosol vertical distribution is necessary for the monitoring and modeling of aerosol particles for various air pollution, visibility and climate-related studies. Upon evaluating 1064 nm AOD and aerosol extinction profiles from the Cloud-Aerosol Transport System (CATS) level 2 aerosol product, we studied the diurnal variation of AOD and aerosol extinction profiles on both regional and global scales.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Francisco Navas-Guzmán, Giovanni Martucci, Martine Collaud Coen, María José Granados-Muñoz, Maxime Hervo, Michael Sicard, and Alexander Haefele
Atmos. Chem. Phys., 19, 11651–11668, https://doi.org/10.5194/acp-19-11651-2019, https://doi.org/10.5194/acp-19-11651-2019, 2019
Short summary
Short summary
The present study demonstrates the capability of a Raman lidar to monitor aerosol hygroscopic processes. The results showed a higher hygroscopicity and wavelength dependency for smoke particles than for mineral dust. The higher sensitivity of the shortest wavelength to hygroscopic growth found for smoke particles was qualitatively reproduced using Mie simulations. The impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using a radiative transfer model.
Lucia T. Deaconu, Nicolas Ferlay, Fabien Waquet, Fanny Peers, François Thieuleux, and Philippe Goloub
Atmos. Chem. Phys., 19, 11613–11634, https://doi.org/10.5194/acp-19-11613-2019, https://doi.org/10.5194/acp-19-11613-2019, 2019
Short summary
Short summary
We analyse and quantify the effect of above-cloud aerosol (AAC) loading on the underlying cloud properties in the South Atlantic Ocean. We use a synergy of remote sensing retrievals collocated with ERA-Interim meteorological profiles. The results show that for larger loads of AACs, clouds are optically thicker, with an increase in liquid water path by 20 g m−2 and lower cloud-top altitudes. We also observe a strong covariation between the aerosol plume and the presence of water vapour.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Cited articles
Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989.
Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties
using the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29,
57–69, https://doi.org/10.1080/02786829808965551, 1998.
Anderson, T. L., Covert, D. S., Wheeler, J. D., Harris, J. M., Perry, K. D.,
Trost, B. E., Jaffe, D. J., and Ogren, J. A.: Aerosol backscatter fraction
and single scattering albedo: measured values and uncertainties at a coastal
station in the Pacific Northwest, J. Geophys. Res.-Atmos., 104,
26793–26807, https://doi.org/10.1029/1999JD900172, 1999.
Anttila, T., Vaattovaara, P., Komppula, M., Hyvärinen, A. P.,
Lihavainen, H., Kerminen, V. M., and Laaksonen, A.: Size dependent
activation of aerosols into cloud droplets at a subarctic background site
during the second Pallas Cloud Experiment (2ndPaCE): method development and
data evaluation, Atmos. Chem. Phys., 9, 4841–4854,
https://doi.org/10.5194/acp-9-4841-2009, 2009.
Berg, L. K., Fast, J. D., Barnard, J. C., Burton, S. P., Cairns, B., Chand,
D., Comstock, J. M., Dunagan, S., Ferrare, R. A., Flynn, C. J., Hair, J. W., Hostetler, C., Hubbe, J., Jefferson, A., Johnson, R., Kassianov, E. I., Kluzek, C. D., Kollias, P., Lamer, K., Lantz, K., Mei, F., Miller, M. A., Michalsky, J., Ortega, I., Pekour, M., Rogers, R. R., Russell, P., Redemann, J., Sedlacek, A., Rozenhaimer, M. S., Schmid, B., Shilling, J. E., Shinozuka, Y., Springston, S. R., Tomlinson, J. M., Tyrrell, M., Wilson, J. M., Volkamer, R., Zelenyuk, A., and Berkowitz, C. M.: The
Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol
layers on aerosol optical depth, J. Geophys. Res.-Atmos., 121, 336–361,
https://doi.org/10.1002/2015JD023848, 2016.
Boney, S. and Dufresne, J. L.: Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models, Geophys. Res.
Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2006.
Bréon, F.-M., Tanré, D., and Generoso, S.: Aerosol effect on cloud
droplet size monitored from satellite, Science, 295, 834–838,
https://doi.org/10.1126/science.1066434, 2002.
Broekhuizen, K., Chang, R. Y. W., Leaitch, W. R., Li, S. M., and Abbatt, J.
P. D.: Closure between measured and modeled cloud condensation nuclei (CCN)
using size-resolved aerosol compositions in downtown Toronto, Atmos. Chem.
Phys., 6, 2513–2524, https://doi.org/10.5194/acp-6-2513-2006, 2006.
Cecchini, M. A., Machado, L. A. T., Comstock, J. M., Mei, F., Wang, J., Fan,
J., Tomlinson, J. M., Schmid, B., Albrecht, R., Martin, S. T., and Artaxo,
P.: Impacts of the Manaus pollution plume on the microphysical properties of
Amazonian warm-phase clouds in the wet season, Atmos. Chem. Phys., 16,
7029–7041, https://doi.org/10.5194/acp-16-7029-2016, 2016.
Chen, R., Li, Z., Kuligowski, R. J., Ferraro, R., and Weng, F.: A study of
warm rain detection using A-Train satellite data, Geophys. Res. Lett., 38,
L04804, https://doi.org/10.1029/2010GL046217, 2011.
Chiu, J. C., Huang, C. H., Marshak, A., Slutsker, I., Giles, D. M., Holben,
B. N., Knyazikhin, Y., and Wiscombe, W. J.: Cloud optical depth retrievals
from the Aerosol Robotic Network (AERONET) cloud mode observations, J.
Geophys. Res.-Atmos., 115, D14202, https://doi.org/10.1029/2009JD013121,
2010.
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R.
T., Miller, M. A., and Martner, B. E.: Objective determination of cloud
heights and radar reflectivities using a combination of active remote
sensors at the ARM CART sites, J. Appl. Meteor., 39, 645–665,
https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2, 2000.
Crilley, L. R., Jayaratne, E. R., Ayoko, G. A., Miljevic, B., Ristovski, Z.,
and Morawska, L.: Observations on the formation, growth and chemical
composition of aerosols in an urban environment, Environ. Sci. Technol., 48,
6588–6596, https://doi.org/10.1021/es5019509, 2014.
Dong, X., Minnis, P., Xi, B., Sun-Mack, S., and Chen, Y.: Comparison of
CERES-MODIS stratus cloud properties with ground-based measurements at the
DOE ARM Southern Great Plains site, J. Geophys. Res.-Atmos., 113, D03204,
https://doi.org/10.1029/2007JD008438, 2008.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J.,
Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and
Andreae, M. O.: Size matters more than chemistry for cloud-nucleating
ability of aerosol particles, Science, 312, 1375–1378,
https://doi.org/10.1126/science.1125261, 2006.
Feingold, G., Eberhard, W. L., Veron, D. E., and Previdi, M.: First
measurements of the Twomey indirect effect using ground-based remote
sensors, Geophys. Res. Lett., 30, 1827,
https://doi.org/10.1029/2002GL016633, 2003.
Feingold, G., Furrer, R., Pilewskie, P., Remer, L. A., Min, Q., and Jonsson,
H.: Aerosol indirect effect studies at Southern Great Plains during the May
2003 Intensive Operations Period, J. Geophys. Res.-Atmos., 111, D05S14,
https://doi.org/10.1029/2004JD005648, 2006.
Garrett, T. J. and Zhao, C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789,
https://doi.org/10.1038/nature04636, 2006.
Garrett, T. J. and Zhao, C.: Ground-based remote sensing of thin clouds in
the Arctic, Atmos. Meas. Tech., 6, 1227–1243,
https://doi.org/10.5194/amt-6-1227-2013, 2013.
Garrett, T. J., Zhao, C., Dong, X., Mace, G. G., and Hobbs, P. V.: Effects
of varying aerosol regimes on low-level Arctic stratus, Geophys. Res. Lett.,
31, L17105, https://doi.org/10.1029/2004GL019928, 2004.
Han, Q., Rossow, W. B., Zeng, J., and Welch, R.: Three different behaviors
of liquid water path of water clouds in aerosol-cloud interactions, J.
Atmos. Sci., 59, 726–735,
https://doi.org/10.1175/1520-0469(2002)059<0726:TDBOLW>2.0.CO;2, 2002.
Hao, L., Romakkaniemi, S., Kortelaninen, A., Jaatinen, A., Portin, H.,
Miettinen, P., Komppula, M., Leskinen, A., Virtanen, A., Smith, J. N.,
Sueper, D., Worsnop, D. R., Lehtinen, K. E. J., and Laaksonen, A.: Aerosol
chemical composition in cloud events by high resolution time-of-flight
aerosol mass spectrometry, Environ. Sci. Technol., 47, 2645–2653,
https://doi.org/10.1021/es302889w, 2013.
Harikishan, G., Padmakumari, B., Maheskumar, R. S., Pandithurai, G., and
Min, Q. L.: Aerosol indirect effects from ground-based retrievals over the
rain shadow region in Indian subcontinent, J. Geophys. Res.-Atmos., 121,
2369–2382, https://doi.org/10.1002/2015JD024577, 2016.
Hill, A., Feingold, G., and Jiang, H.: The influence of entrainment and
mixing assumption on aerosol–cloud interactions in marine stratocumulus, J.
Atmos. Sci., 66, 1450–1464, https://doi.org/10.1175/2008JAS2909.1, 2009.
Holben, B. N., Kaufman, Y. J., and Eck, T. F.: AERONET: a federated
instrument network and data archive for aerosol characterization, Remote
Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5,
1998.
IPCC, Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jefferson, A.: Aerosol observing system (AOS) handbook, ARMTR-014, U.S. Dep.
of Energy, Washington, D. C., 2011.
Johnson, B. T., Shine, K. P., and Forster, P. M.: The semi-direct aerosol
effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. Roy.
Meteorol. Soc., 130, 1407–1422, https://doi.org/10.1256/qj.03.61,
2004.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich, Y.: The
effect of smoke, dust, and pollution aerosol on shallow cloud development
over the Atlantic Ocean, P. Natl. Acad. Sci. USA, 102, 11207–11212,
https://doi.org/10.1073/pnas.0505191102, 2005.
Kim, B.-G., Schwartz, S. E., Miller, M. A., and Min, Q.: Effective radius of
cloud droplets by ground-based remote sensing: relationship to aerosol, J.
Geophys. Res.-Atmos., 108, 4740, https://doi.org/10.1029/2003JD003721,
2003.
Kim, B.-G., Miller, M. A., Schwartz, S. E., Liu, Y., and Min, Q.: The role
of adiabaticity in the aerosol first indirect effect, J. Geophys. Res.-Atmos., 113, D05210, https://doi.org/10.1029/2007JD008961, 2008.
Kollias, P., Clothiaux, E. E., Miller, M. A., Luke, E. P., Johnson, K. L.,
Moran, K. P., Widener, K. B., and Albrecht, B. A.: The Atmospheric Radiation
Measurement Program cloud profiling radars: second-generation sampling
strategies, processing, and cloud data products, J. Atmos. Ocean. Technol.,
24, 1199–1214, https://doi.org/10.1175/JTECH2033.1, 2007.
Komppula, M., Lihavainen, H., Kerminen, V.-M., Kulmala, M., and Viisanen,
Y.: Measurements of cloud droplet activation of aerosol particles at a clean
subarctic background site, J. Geophys. Res.-Atmos., 110, D06204,
https://doi.org/10.1029/2004JD005200, 2005.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of
the effect of Amazon smoke on inhibition of cloud formation, Science, 303,
1342–1345, https://doi.org/10.1126/science.1089424, 2004.
Lebsock, M. D., Stephens, G. L., and Kummerow, C.: Multisensor satellite
observations of aerosol effects on warm clouds, J. Geophys. Res.-Atmos.,
113, D15205, https://doi.org/10.1029/2008JD009876, 2008.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., and Ding, Y.: Long-term
impacts of aerosols on the vertical development of clouds and precipitation,
Nature Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313, 2011.
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon interactions in Asia, Rev. Geophys., 54, 866–929, https://doi.org/10.1002/2015RG000500, 2016.
Lihavainen, H., Kerminen, V. M., and Remer, L. A.: Aerosol-cloud interaction
determined by both in situ and satellite data over a northern high-latitude
site, Atmos. Chem. Phys., 10, 10987–10995,
https://doi.org/10.5194/acp-10-10987-2010, 2010.
Liljegren, J. C. and Lesht, B. M.: Preliminary results with the
twelve-channel microwave radiometer profiler at the North Slope of Alaska
Climate Research Facility, Fourteenth ARM Science Team Meeting Proceedings,
Albuquerque, New Mexico, 2004.
Liu, J. and Li, Z.: Estimation of cloud condensation nuclei concentration
from aerosol optical quantities: influential factors and uncertainties,
Atmos. Chem. Phys., 14, 471–483,
https://doi.org/10.5194/acp-14-471-2014, 2014.
Liu, J. and Li, Z.: First surface-based estimation of the aerosol indirect
effect over a site in southeastern China, Adv. Atmos. Sci., 35, 169–181,
https://doi.org/10.1007/s00376-017-7106-2, 2018a.
Liu, J. and Li, Z.: Significant underestimation in the optically-based
estimation of the aerosol first indirect effect induced by the aerosol
swelling effect, Geophys. Res. Lett., 45, 5690–5699,
https://doi.org/10.1029/2018GL077679, 2018b.
Liu, J., Zheng, Y., Li, Z., and Cribb, M.: Analysis of cloud condensation
nuclei properties at a polluted site in southeastern China during the
AMF-China Campaign, J. Geophys. Res.-Atmos., 116, D00K35,
https://doi.org/10.1029/2011jd016395, 2011.
Liu, J., Zheng, Y., Li, Z., Flynn, C., and Cribb, M.: Seasonal variations of
aerosol optical properties, vertical distribution and associated radiative
effects in the Yangtze Delta region of China, J. Geophys. Res., 117, D00K38,
https://doi.org/10.1029/2011JD016490, 2012.
Liu, J., Li, Z., Zheng, Y., Chiu, J. C., Zhao, F., Cadeddu, M., Weng, F.,
and Cribb, M.: Cloud optical and microphysical properties derived from
ground-based and satellite sensors over a site in the Yangtze Delta region,
J. Geophys. Res.-Atmos., 118, 9141–9152, https://doi.org/10.1002/jgrd.50648, 2013.
Liu, J., Li, Z., and Cribb, M.: Response of marine boundary layer cloud
properties to aerosol perturbations associated with meteorological
conditions from the 19-month AMF-Azores campaign, J. Atmos. Sci., 73,
4253–4268, https://doi.org/10.1175/JAS-D-15-0364.1, 2016.
Lohmann, U., Rotstayn, L., Storelvmo, T., Jones, A., Menon, S., Quaas, J.,
Ekman, A. M. L., Koch, D., and Ruedy, R.: Total aerosol effect: radiative
forcing or radiative flux perturbation?, Atmos. Chem. Phys., 10, 3235–3246,
https://doi.org/10.5194/acp-10-3235-2010, 2010.
Matsui, T., Masunaga, H., Pielke Sr., R. A., and Tao, W.-K.: Impact of
aerosols and atmospheric thermodynamics on cloud properties within the
climate system, Geophys. Res. Lett., 31, L06109,
https://doi.org/10.1029/2003GL019287, 2004.
McComiskey, A. and Feingold, G.: Quantifying error in the radiative forcing
of the first aerosol indirect effect, Geophys. Res. Lett., 35, L02810,
https://doi.org/10.1029/2007GL032667, 2008.
McComiskey, A., Feingold, G., Frisch, A. S., Turner, D. D., Miller, M. A.,
Chiu, J. C., Min, Q., and Ogren, J. A.: An assessment of aerosol-cloud
interactions in marine stratus clouds based on surface remote sensing, J.
Geophys. Res.-Atmos., 114, D09203, https://doi.org/10.1029/2008JD011006,
2009.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M.,
Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T.,
Murphy, D., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of
physical and chemical aerosol properties on warm cloud droplet activation,
Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006,
2006.
Medeiros, B. and Stevens, B.: Revealing differences in GCM representations
of low clouds, Clim. Dynam., 36, 385–399,
https://doi.org/10.1007/s00382-009-0694-5, 2011.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M., Croteau, P.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring
of the composition and mass concentrations of ambient aerosol, Aerosol Sci.
Technol., 45, 770–784, https://doi.org/10.1080/02786826.2011.560211,
2011.
Painemal, D. and Zuidema, P.: The first aerosol indirect effect quantified
through airborne remote sensing during VOCALS-REx, Atmos. Chem. Phys.,
13, 917–931, https://doi.org/10.5194/acp-13-917-2013, 2013.
Pandithurai, G., Takamura, T., Yamaguchi, J., Miyagi, K., Takano, T.,
Ishizaka, Y., Dipu, S., and Shimizu, A.: Aerosol effect on cloud droplet
size as monitored from surface-based remote sensing over East China Sea
region, Geophys. Res. Lett., 36, L13805, https://doi.org/10.1029/2009GL038451, 2009.
Portin, H., Leskinen, A., Hao, L., Kortelainen, A., Miettinen, P., Jaatinen,
A., Laaksonen, A., Lehtinen, K. E. J., Romakkaniemi, S., and Komppula, M.:
The effect of local sources on particle size and chemical composition and
their role in aerosol–cloud interactions at Puijo measurement station,
Atmos. Chem. Phys., 14, 6021–6034,
https://doi.org/10.5194/acp-14-6021-2014, 2014.
Qiu, Y., Zhao, C., Guo, J., and Li, J.: Eight-year ground-based
observational analysis about the seasonal variation of the aerosol-cloud
droplet effective radius relationship at SGP site, Atmos. Environ., 164,
139–146, https://doi.org/10.1016/j.atmosenv.2017.06.002, 2017.
Raymond, T. M. and Pandis, S. N.: Formation of cloud droplets by
multicomponent organic particles, J. Geophys. Res.-Atmos., 108, 4469,
https://doi.org/10.1029/2003JD003503, 2002.
Rolph, G. D.: Real-time Environmental Applications and Display sYstem
(READY) Website (available at: http://www.ready.noaa.gov, last access: 10 November 2018), NOAA Air Resources Laboratory,
College Park, MD, 2016.
Sekiguchi, M., Nakajima, T., Suzuki, K., Kawamoto, K., Higurashi, A.,
Rosenfeld, D., Sano, I., and Mukai, S.: A study of the direct and indirect
effects of aerosols using global satellite data sets of aerosol and cloud
parameters, J. Geophys. Res.-Atmos., 108, 4699,
https://doi.org/10.1029/2002JD003359, 2003.
Sena, E. T., McComiskey, A., and Feingold, G.: A long-term study of
aerosol-cloud interactions and their radiative effect at the Southern Great
Plains using ground-based measurements, Atmos. Chem. Phys., 16,
11301–11318, https://doi.org/10.5194/acp-16-11301-2016, 2016.
Sporre, M. K., Glantz, P., Tunved, P., Swietlicki, E., Kulmala, M., and
Lihavainen, H.: A study of the indirect aerosol effect on subarctic marine
liquid low-level clouds using MODIS cloud data and ground-based aerosol
measurements, Atmos. Res., 116, 56–66,
https://doi.org/10.1016/j.atmosres.2011.09.014, 2012.
Sporre, M. K., Swietlicki, E., Glantz, P., and Kulmala, M.: Aerosol indirect
effects on continental low-level clouds over Sweden and Finland, Atmos.
Chem. Phys., 14, 12167–12179,
https://doi.org/10.5194/acp-14-12167-2014, 2014.
Stein, A. F., Draxler, R. R, Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteor. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Su, W., Loeb, N. G., Xu, K.-M., Schuster, G. L., and Eitzen, Z. A.: An
estimate of aerosol indirect effect from satellite measurements with
concurrent meteorological analysis, J. Geophys. Res.-Atmos., 115,
D18219, https://doi.org/10.1029/2010jd013948, 2010.
Twohy, C. H., Anderson, J. R., Toohey, D. W., Andrejczuk, M., Adams, A.,
Lytle, M., George, R. C., Wood, R., Saide, P., Spak, S., Zuidema, P., and
Leon, P.: Impacts of aerosol particles on the microphysical and radiative
properties of stratocumulus clouds over the southeast Pacific Ocean, Atmos.
Chem. Phys., 13, 2541–2562, https://doi.org/10.5194/acp-13-2541-2013,
2013.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J.
Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Wang, F., Guo, J., Wu, Y., Zheng, X., Deng, M., Li, X., Zhang, J., and Zhao,
J.: Satellite observed aerosol-induced variability in warm cloud properties
under different meteorological conditions over eastern China, Atmos.
Environ., 84, 122–132, https://doi.org/10.1016/j.atmosenv.2013.11.018, 2014.
Wang, J., Flagan, R. C., and Seinfeld, J. H.: A differential mobility
analyzer (DMA) system for submicron aerosol measurements at ambient relative
humidity, Aerosol Sci. Technol., 37, 46–52,
https://doi.org/10.1080/02786820300891, 2003.
Werner, F., Ditas, F., Siebert, H., Simmel, M., Wehner, B., Pilewskie, P.,
Schmeissner, T., Shaw, R. A., Hartmann, S., Wex, H., Roberts, G. C., and
Wendisch, M.: Twomey effect observed from collocated microphysical and
remote sensing measurements over shallow cumulus, J. Geophys. Res.-Atmos.,
119, 1534–1545, https://doi.org/10.1002/2013JD020131, 2014.
West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin,
N., Partridge, D. G., and Kipling, Z.: The importance of vertical velocity
variability for estimates of the indirect aerosol effects, Atmos. Chem.
Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, 2014.
Yan, H., Li, Z., Huang, J., Cribb, M., and Liu, J.: Long-term
aerosol-mediated changes in cloud radiative forcing of deep clouds at the
top and bottom of the atmosphere over the Southern Great Plains, Atmos.
Chem. Phys., 14, 7113–7124, https://doi.org/10.5194/acp-14-7113-2014,
2014.
Yang, X., Zhao, C. F., Zhou, L. J., Wang, Y., and Liu, X. H.: Distinct
impact of different types of aerosols on surface solar radiation in China,
J. Geophys. Res.-Atmos., 121, 6459–6471,
https://doi.org/10.1002/2016JD024938, 2016.
Yang, X., Zhao, C., Zhou, L., Li, Z., Cribb, M., and Yang, S.: Wintertime
cooling and a potential connection with transported aerosols in Hong Kong
during recent decades, Atmos. Res., 211, 52–61,
https://doi.org/10.1016/j.atmosres.2018.04.029, 2018.
Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., Zhao, L., Lv, F.
and Yan, F.: Toward understanding the process-level impacts of aerosols on
microphysical properties of shallow cumulus cloud using aircraft
observations, Atmos. Res., 221, 27–33,
https://doi.org/10.1016/j.atmosres.2019.01.027, 2019.
Zhang, Q., Quan, J., Tie, X., Huang, M., and Ma, X.: Impact of aerosol
particles on cloud formation: aircraft measurements in China, Atmos.
Environ., 45, 665–672, https://doi.org/10.1016/j.atmosenv.2010.10.025,
2011.
Zhao, C. and Garrett, T.: Effects of Arctic haze on surface cloud radiative
forcing, Geophys. Res. Lett., 42, 557–564,
https://doi.org/10.1002/2014GL062015, 2015.
Zhao, C. F., Xie, S. C., Klein, S. A., Protat, A., Shupe, M. D., McFarlane, S. A., Comstock, J. M., Delanoë, J., Deng, M., Dunn, M., Hogan, R. J., Huang, D., Jensen, M. P., Mace, G. G., McCoy, R., O'Connor, E. J., Turner, D. D., and Wang, Z. Z.: Toward understanding of differences in current cloud
retrievals of ARM ground-based measurements, J. Geophys. Res.-Atmos., 117,
D10206, https://doi.org/10.1029/2011JD016792, 2012a.
Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., and Wang,
Y.: Negative aerosol-cloud re relationship from aircraft observations
over Hebei, China, Earth Space Sci., 5, 19–29,
https://doi.org/10.1002/2017EA000346, 2018.
Zhao, C., Zhao, L., and Dong, X.: A case study of stratus cloud properties
using in situ aircraft observations over Huanghua, China, Atmosphere, 10,
19, https://doi.org/10.3390/atmos10010019, 2019.
Short summary
This study uses the data collected during the TCAP field campaign to investigate the aerosol properties and the influence of aerosol loading and composition on low-warm-cloud development and microphysical properties. The results indicated that the aerosols significantly weaken the dependence of cloud development on thermodynamic conditions. Aerosol first indirect effects estimated for aerosols with a low mass of organics were larger than those for aerosols with a high mass of organics.
This study uses the data collected during the TCAP field campaign to investigate the aerosol...
Altmetrics
Final-revised paper
Preprint