Articles | Volume 19, issue 14
Atmos. Chem. Phys., 19, 9485–9494, 2019
https://doi.org/10.5194/acp-19-9485-2019
Atmos. Chem. Phys., 19, 9485–9494, 2019
https://doi.org/10.5194/acp-19-9485-2019
Research article
26 Jul 2019
Research article | 26 Jul 2019

Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter

Pavle Arsenovic et al.

Related authors

Peculiar COVID-19 effects in the Greater Tokyo Area revealed by spatiotemporal variabilities of tropospheric gases and light-absorbing aerosols
Alessandro Damiani, Hitoshi Irie, Dmitry Belikov, Shuei Kaizuka, Hossain Mohammed Syedul Hoque, and Raul R. Cordero
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-110,https://doi.org/10.5194/acp-2022-110, 2022
Preprint under review for ACP
Short summary
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022,https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary
MAX-DOAS observations of formaldehyde and nitrogen dioxide at three sites in Asia and comparison with the global chemistry transport model CHASER
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, Manish Naja, and Al Mashroor Fatmi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-25,https://doi.org/10.5194/acp-2022-25, 2022
Preprint under review for ACP
Short summary
An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols
Debra K. Weisenstein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Gabriel Chiodo, Thomas Peter, and David W. Keith
Atmos. Chem. Phys., 22, 2955–2973, https://doi.org/10.5194/acp-22-2955-2022,https://doi.org/10.5194/acp-22-2955-2022, 2022
Short summary
Intercomparison of upper tropospheric and lower stratospheric water vapor measurements over the Asian Summer Monsoon during the StratoClim Campaign
Clare E. Singer, Benjamin Clouser, Sergey Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-13,https://doi.org/10.5194/amt-2022-13, 2022
Revised manuscript under review for AMT
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys., 22, 2079–2093, https://doi.org/10.5194/acp-22-2079-2022,https://doi.org/10.5194/acp-22-2079-2022, 2022
Short summary
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781, https://doi.org/10.5194/acp-21-15771-2021,https://doi.org/10.5194/acp-21-15771-2021, 2021
Short summary
Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021,https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary

Cited articles

Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A., Päivärinta, S. M., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and van de Kamp, M.: Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons, J. Geophys. Res.-Atmos., 123, 607–622, https://doi.org/10.1002/2017JD027605, 2018. 
Arsenovic, P.: SOCOL3-MPIOM model output, Mendeley Data, v1, https://doi.org/10.17632/kgzwjgf4bk.1, 2019. 
Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J. M., Mursula, K., Tummon, F., and Peter, T.: The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phy., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008, 2016. 
Asikainen, T. and Ruopsa, M.: Solar wind drivers of energetic electron precipitation, J. Geophys. Res.-Space, 121, 2209–2225, https://doi.org/10.1029/2002JA009458, 2016. 
Baker, D. N., Barth, C. A., Mankoff, K. E., Kanekal, S. G., Bailey, S. M., Mason, G. M., and Mazur, J. E.: Relationships between precipitating auroral zone electrons and lower thermospheric nitric oxide densities: 1998–2000, J. Geophys. Res., 106, 24465–24480, https://doi.org/10.1029/2001JA000078, 2001. 
Download
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Altmetrics
Final-revised paper
Preprint