Articles | Volume 19, issue 22
Atmos. Chem. Phys., 19, 13989–14007, 2019
https://doi.org/10.5194/acp-19-13989-2019

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 19, 13989–14007, 2019
https://doi.org/10.5194/acp-19-13989-2019

Research article 21 Nov 2019

Research article | 21 Nov 2019

Aerosol–cloud closure study on cloud optical properties using remotely piloted aircraft measurements during a BACCHUS field campaign in Cyprus

Radiance Calmer et al.

Related authors

Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions
Radiance Calmer, Gregory C. Roberts, Jana Preissler, Kevin J. Sanchez, Solène Derrien, and Colin O'Dowd
Atmos. Meas. Tech., 11, 2583–2599, https://doi.org/10.5194/amt-11-2583-2018,https://doi.org/10.5194/amt-11-2583-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021,https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Towards understanding the characteristics of new particle formation in the Eastern Mediterranean
Rima Baalbaki, Michael Pikridas, Tuija Jokinen, Tiia Laurila, Lubna Dada, Spyros Bezantakos, Lauri Ahonen, Kimmo Neitola, Anne Maisser, Elie Bimenyimana, Aliki Christodoulou, Florin Unga, Chrysanthos Savvides, Katrianne Lehtipalo, Juha Kangasluoma, George Biskos, Tuukka Petäjä, Veli-Matti Kerminen, Jean Sciare, and Markku Kulmala
Atmos. Chem. Phys., 21, 9223–9251, https://doi.org/10.5194/acp-21-9223-2021,https://doi.org/10.5194/acp-21-9223-2021, 2021
Short summary
Large-scale synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in eastern China
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021,https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
A long-term study of cloud residuals from low-level Arctic clouds
Linn Karlsson, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger
Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021,https://doi.org/10.5194/acp-21-8933-2021, 2021
Short summary
Measurement report: Altitudinal variation of cloud condensation nuclei activation across the Indo-Gangetic Plain prior to monsoon onset and during peak monsoon periods: results from the SWAAMI field campaign
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021,https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary

Cited articles

Abade, G. C., Grabowski, W. W., and Pawlowska, H.: Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations, J. Atmos. Sci., 75, 3365–3379, https://doi.org/10.1175/JAS-D-18-0078.1, 2018. a
Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a
Baker, B. A.: Turbulent Entrainment and Mixing in Clouds: A New Observational Approach, J. Atmos. Sci., 49, 387–404, https://doi.org/10.1175/1520-0469(1992)049<0387:TEAMIC>2.0.CO;2, 1992. a
Bender, F. A.-M., Engström, A., and Karlsson, J.: Factors Controlling Cloud Albedo in Marine Subtropical Stratocumulus Regions in Climate Models and Satellite Observations, J. Climate, 29, 3559–3587, https://doi.org/10.1175/JCLI-D-15-0095.1, 2016. a
Blyth, A. M.: Entrainment in Cumulus Clouds, J. Appl. Meteorol., 32, 626–641, https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2, 1993. a
Download
Short summary
Unmanned aerial vehicles (UAVs) bring new opportunities to study clouds and better represent these in models. This analysis presents a comparison between direct observations in clouds from a UAV flight and results of a one-dimension model. The experiment is part of the European BACCHUS project, and took place in Cyprus, considered as a polluted environment. The study shows the importance of taking into account mixing air at cloud top to better match the model results with the UAV observations.
Altmetrics
Final-revised paper
Preprint