Articles | Volume 17, issue 20
Atmos. Chem. Phys., 17, 12743–12778, 2017

Special issue: The SPARC Reanalysis Intercomparison Project (S-RIP) (ACP/ESSD...

Atmos. Chem. Phys., 17, 12743–12778, 2017
Research article
26 Oct 2017
Research article | 26 Oct 2017

Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP

Sean M. Davis et al.

Related authors

The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538,,, 2022
Short summary
A Fiber Optic Distributed Temperature Sensor for Continuous in situ Profiling 2 km Beneath Constant-altitude Scientific Balloons
J. Douglas Goetz, Lars K. Kalnajs, Terry Deshler, Sean Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech. Discuss.,,, 2022
Preprint under review for AMT
Short summary
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Sophie Godin-Beekmann, Niramson Azouz, Viktoria Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Douglas Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard-Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, and Roeland van Malderen
Atmos. Chem. Phys. Discuss.,,, 2022
Revised manuscript accepted for ACP
Short summary
A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648,,, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061,,, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149,,, 2022
Short summary
Effects of Reanalysis Forcing Fields on Ozone Trends from a Chemical Transport Model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys. Discuss.,,, 2022
Preprint under review for ACP
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past. Part 1: the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys. Discuss.,,, 2022
Revised manuscript accepted for ACP
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys., 22, 2079–2093,,, 2022
Short summary
An Arctic ozone hole in 2020 if not for the Montreal Protocol
Catherine Wilka, Susan Solomon, Doug Kinnison, and David Tarasick
Atmos. Chem. Phys., 21, 15771–15781,,, 2021
Short summary

Cited articles

Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res.-Atmos., 120, 7534–7554,, 2015.
Arguez, A. and Vose, R. S.: The definition of the standard WMO climate normal the key to deriving alternative climate normals, B. Am. Meteorol. Soc., 92, 699–U345,, 2011.
Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Kohler, M., Miller, M., and Redelsperger, J. L.: The simulation of the diurnal cycle of convective precipitation over land in a global model, Q. J. Roy. Meteor. Soc., 130, 3119–3137,, 2004.
Bhartia, P. K. and Wellemeyer, C. W.: TOMS-V8 total O3 algorithm, in: OMI Algorithm Theoretical Basis Document: OMI Ozone Products, edited by: Bhartia, P. K., NASA Goddard Space Flight Center, Greenbelt, Maryland, ATBD-OMI-02, 15–32, 2002.
Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548,, 2013.
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Final-revised paper