Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8125-2016
https://doi.org/10.5194/acp-16-8125-2016
Research article
 | 
06 Jul 2016
Research article |  | 06 Jul 2016

The millennium water vapour drop in chemistry–climate model simulations

Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller

Related authors

The global impact of the transport sectors on the atmospheric aerosol and the resulting climate effects under the Shared Socioeconomic Pathways (SSPs)
Mattia Righi, Johannes Hendricks, and Sabine Brinkop
Earth Syst. Dynam., 14, 835–859, https://doi.org/10.5194/esd-14-835-2023,https://doi.org/10.5194/esd-14-835-2023, 2023
Short summary
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023,https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022,https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys., 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021,https://doi.org/10.5194/acp-21-9151-2021, 2021
Short summary
Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere
Markus Kilian, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020,https://doi.org/10.5194/acp-20-11697-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023,https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Stratospheric ozone trends and attribution over 1984–2020 using ordinary and regularised multivariate regression models
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2023-591,https://doi.org/10.5194/egusphere-2023-591, 2023
Short summary
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
EGUsphere, https://doi.org/10.5194/egusphere-2023-495,https://doi.org/10.5194/egusphere-2023-495, 2023
Short summary
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023,https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022,https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary

Cited articles

Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D. R.: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340, 2010.
Deckert, R. and Dameris, M.: Higher tropical SSTs strengthen the tropical upwelling via deep convection, Geophys. Res. Lett., 35, L10813, https://doi.org/10.1029/2008GL033719, 2008.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., Rosenlof, K. H., and Vernier, J.-P.: Variations of stratospheric water vapor over the past three decades, J. Geophys. Res., 119, 12588–12598, https://doi.org/10.1002/2014JD021712, 2014.
Eichinger, R., Jöckel, P., and Lossow, S.: Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO/H2O variations, Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015, 2015
Eyring, V. and Lamarque, J.-F.: Global chemistry-climate modeling and evaluation, EOS T. Am. Geophys. Un., 93, 539, https://doi.org/10.1029/2012EO510012, 2012.
Download
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO. There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Altmetrics
Final-revised paper
Preprint