the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia
K. Ding
Q. Liu
T. L. Zhao
J. Shi
Y. Han
H. Wang
Related authors
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
underestimatedthe oxidation processes in the elevation atmospheres.
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
surface darkening) could influence the radiative energy balance. During the harvest season in eastern China, satellite retrieval shows that surface albedo was significantly decreased. Observational evidence of meteorological perturbations from the surface darkening is identified, which is further examined by model simulation. This work highlights the importance of burning-induced albedo change in weather forecast and regional climate.
dome effect). Key factors like vertical profile and aging of aerosol, and underlying surface, are explored with a meteorology–chemistry coupled model. We found the effect to be sensitive to altitude of aerosol and can be intensified by aging processes. The effect is also more substantial in rural areas. China’s air quality would benefit from black carbon reduction from elevated sources and domestic combustion.
Related subject area
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot, but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.