Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14695-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-14695-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Michael Höpfner
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Oliver Kirner
Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
Ingo Wohltmann
Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Potsdam, Germany
Silvia Bucci
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/PSL-ENS/Sorbonne Université/École polytechnique, Paris, France
Bernard Legras
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/PSL-ENS/Sorbonne Université/École polytechnique, Paris, France
Felix Friedl-Vallon
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Norbert Glatthor
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Erik Kretschmer
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Jörn Ungermann
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany
Gerald Wetzel
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Related authors
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Thomas von Clarmann and Sören Johansson
Atmos. Chem. Phys., 18, 15363–15386, https://doi.org/10.5194/acp-18-15363-2018, https://doi.org/10.5194/acp-18-15363-2018, 2018
Short summary
Short summary
This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. Formation and sink processes are discussed, as well as spectral features and spectroscopic studies. Remote sensing, fluorescence, and mass spectroscopic measurement techniques are introduced, and global distributions and the annual cycle are discussed in the context of chlorine de-/activation.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200, https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfate aerosols, potentially persisting for several years and influencing climate and the ozone layer. We developed a new submodel for Explosive Volcanic ERuptions (EVER) that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, and Clair Duchamp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1433, https://doi.org/10.5194/egusphere-2024-1433, 2024
Short summary
Short summary
The Hunga volcano erupted on 15/01/22, producing the largest stratospheric aerosol perturbation of the last 30 years. Stratospheric volcanic aerosols usually produce a transient climate cooling; these impacts depend on volcanic aerosol composition/size, due to size-dependent interactions with solar/terrestrial radiation. We demonstrate that the Hunga stratospheric aerosol have a larger cooling potential per unit mass than the past climate-relevant El Chichon (1984) and Pinatubo (1991) eruptions.
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1793, https://doi.org/10.5194/egusphere-2024-1793, 2024
Short summary
Short summary
We present global upper tropospheric distributions of the pollutants HCN, CO, C2H2, C2H6, PAN and HCOOH, observed by MIPAS/Envisat between 2002 and 2012. This common view allows conclusions on the sources of the different pollutants, like, e.g., biomass burning, anthropogenic sources or biogenic release. For this purpose we compare their VMR distributions and additionally perform global correlation and regression analyses.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Katrin Müller, Peter von der Gathen, and Markus Rex
Atmos. Chem. Phys., 24, 4693–4716, https://doi.org/10.5194/acp-24-4693-2024, https://doi.org/10.5194/acp-24-4693-2024, 2024
Short summary
Short summary
The transport history of tropospheric air masses above the tropical western Pacific is studied by local ozone and relative humidity profile measurements from Palau. A prominent anti-correlation between both tracers separates air masses of different origin and genesis. Back trajectories confirm a local convective origin of the year-round humid ozone-poor background. Anomalously dry ozone-rich air is generated in tropical Asia by pollution and dehydrated during transport via radiative cooling.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023, https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
Short summary
Record-breaking wildfires ravaged south-eastern Australia during the fire season 2019–2020. These fires injected a smoke plume in the stratosphere, which dispersed over the whole Southern Hemisphere and interacted with solar and terrestrial radiation. A number of detached smoke bubbles were also observed emanating from this plume and ascending quickly to over 35 km altitude. Here we study how absorption of radiation generated ascending motion of both the the hemispheric plume and the vortices.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Manuel López-Puertas, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 2167–2196, https://doi.org/10.5194/amt-16-2167-2023, https://doi.org/10.5194/amt-16-2167-2023, 2023
Short summary
Short summary
New global nitric oxide (NO) volume-mixing-ratio and lower-thermospheric temperature data products, retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectra with the IMK-IAA MIPAS data processor, have been released. The dataset covers the entire Envisat mission lifetime and includes retrieval results from all MIPAS observation modes. The data are based on ESA version 8 calibration and were processed using an improved retrieval approach.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023, https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Short summary
A new ozone data set, derived from radiation measurements of the space-borne instrument MIPAS, is presented. It consists of more than 2 million single ozone profiles from 2002–2012, covering virtually all latitudes and altitudes between 5 and 70 km. Progress in data calibration and processing methods allowed for significant improvement of the data quality, compared to previous data versions. Hence, the data set will help to better understand e.g. the time evolution of ozone in the stratosphere.
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023, https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
Short summary
We characterized the influence of volcanic aerosols for the period 1990–2019 and established a volcanic SO2 emission inventory that includes more than 500 eruptions. From limb-based satellite observations of SO2 and extinction, we derive 3D plumes of SO2 perturbations and injected mass by a novel method. We calculate instantaneous radiative forcing with a comprehensive chemisty climate model. Our results show that smaller eruptions can also contribute to the stratospheric aerosol forcing.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Bernd Funke, Michael Kiefer, Anne Kleinert, Gabriele P. Stiller, Andrea Linden, and Sylvia Kellmann
Atmos. Meas. Tech., 15, 6991–7018, https://doi.org/10.5194/amt-15-6991-2022, https://doi.org/10.5194/amt-15-6991-2022, 2022
Short summary
Short summary
Errors of profiles of temperature and mixing ratios retrieved from spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding are estimated. All known and quantified sources of uncertainty are considered. Some ongoing uncertaities contribute to both the random and to the systematic errors. In some cases, one source of uncertainty propagates onto the error budget via multiple pathways. Problems arise when the correlations of errors to be propagated are unknown.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022, https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Short summary
As a consequence of extreme heat and drought, record-breaking wildfires ravaged south-eastern Australia during the fire season in 2019–2020. Fires injected a smoke plume very high up to the stratosphere, which dispersed quite quickly to the whole Southern Hemisphere and interacted with solar radiation, reflecting and absorbing part of it – thus producing impacts on the climate system. Here we estimate this impact on radiation and we study how it depends on the properties and ageing of the plume.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Matthias Schneider, Benjamin Ertl, Christopher J. Diekmann, Farahnaz Khosrawi, Andreas Weber, Frank Hase, Michael Höpfner, Omaira E. García, Eliezer Sepúlveda, and Douglas Kinnison
Earth Syst. Sci. Data, 14, 709–742, https://doi.org/10.5194/essd-14-709-2022, https://doi.org/10.5194/essd-14-709-2022, 2022
Short summary
Short summary
We present atmospheric H2O, HDO / H2O ratio, N2O, CH4, and HNO3 data generated by the MUSICA IASI processor using thermal nadir spectra measured by the IASI satellite instrument. The data have global daily coverage and are available for the period between October 2014 and June 2021. Multiple possibilities of data reuse are offered by providing each individual data product together with information about retrieval settings and the products' uncertainty and vertical representativeness.
Paolo Pettinari, Flavio Barbara, Simone Ceccherini, Bianca Maria Dinelli, Marco Gai, Piera Raspollini, Luca Sgheri, Massimo Valeri, Gerald Wetzel, Nicola Zoppetti, and Marco Ridolfi
Atmos. Meas. Tech., 14, 7959–7974, https://doi.org/10.5194/amt-14-7959-2021, https://doi.org/10.5194/amt-14-7959-2021, 2021
Short summary
Short summary
Phosgene (COCl2) is a toxic gas whose presence is a consequence of human activity. Besides its direct injection in the troposphere, stratospheric COCl2 is produced from the decomposition of CCl4, an anthropogenic gas regulated by the Montreal Protocol. As a consequence, COCl2 negative trends characterize the lower and part of the middle stratosphere. However, we find positive trends in the upper troposphere, demonstrating the non-negligible role of other Cl-containing species not yet regulated.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Thomas von Clarmann, Udo Grabowski, Gabriele P. Stiller, Beatriz M. Monge-Sanz, Norbert Glatthor, and Sylvia Kellmann
Atmos. Chem. Phys., 21, 8823–8843, https://doi.org/10.5194/acp-21-8823-2021, https://doi.org/10.5194/acp-21-8823-2021, 2021
Short summary
Short summary
Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Multiannual monthly mean circulation fields are presented.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Anne Kleinert, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, Daniel R. Marsh, and Gabriele P. Stiller
Atmos. Meas. Tech., 14, 4111–4138, https://doi.org/10.5194/amt-14-4111-2021, https://doi.org/10.5194/amt-14-4111-2021, 2021
Short summary
Short summary
An improved dataset of vertical temperature profiles of the Earth's atmosphere in the altitude range 5–70 km is presented. These profiles are derived from measurements of the MIPAS instrument onboard ESA's Envisat satellite. The overall improvements are based on upgrades in the input data and several improvements in the data processing approach. Both of these are discussed, and an extensive error discussion is included. Enhancements of the new dataset are demonstrated by means of examples.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possesses the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus-like cloud top, cloud bottom or position with respect to the tropopause.
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech., 14, 1977–1991, https://doi.org/10.5194/amt-14-1977-2021, https://doi.org/10.5194/amt-14-1977-2021, 2021
Short summary
Short summary
During the Asian summer monsoon period, air pollutants are transported from layers near the ground to high altitudes of 13 to 18 km in the atmosphere. Infrared measurements have shown that particles composed of solid ammonium nitrate are a major part of these pollutants. To enable the quantitative analysis of the infrared spectra, we have determined for the first time accurate optical constants of ammonium nitrate for the low-temperature conditions of the upper atmosphere.
Jin Ma, Linda M. J. Kooijmans, Ara Cho, Stephen A. Montzka, Norbert Glatthor, John R. Worden, Le Kuai, Elliot L. Atlas, and Maarten C. Krol
Atmos. Chem. Phys., 21, 3507–3529, https://doi.org/10.5194/acp-21-3507-2021, https://doi.org/10.5194/acp-21-3507-2021, 2021
Short summary
Short summary
Carbonyl sulfide is an important trace gas in the atmosphere and useful to estimating gross primary productivity in ecosystems, but its sources and sinks remain highly uncertain. Therefore, we applied inverse model system TM5-4DVAR to better constrain the global budget. Our finding is in line with earlier studies, pointing to missing sources in the tropics and more uptake in high latitudes. We also stress the necessity of more ground-based observations and satellite data assimilation in future.
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, and Alexey Ulanovsky
Atmos. Chem. Phys., 21, 3255–3274, https://doi.org/10.5194/acp-21-3255-2021, https://doi.org/10.5194/acp-21-3255-2021, 2021
Short summary
Short summary
This paper focuses on the emission sources and pathways of pollution from the boundary layer to the Asian monsoon anticyclone (AMA) during the StratoClim aircraft campaign period. Simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of AMA and on the formation of the Asian tropopause aerosol layer during the StratoClim campaign.
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021, https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Short summary
Using the Community Earth System Model, we simulate the surface aerosols lifted to the Asian tropopause (the ATAL layer), its composition and trend, covering a long-term period (2000–2015). We identify a
double-peakaerosol vertical profile that we attribute to
dryand
convectivecloud-borne aerosols. We find that natural aerosol (mineral dust) is the dominant aerosol type and has no long-term trend. ATAL's anthropogenic fraction, by contrast, shows a marked positive trend.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, https://doi.org/10.5194/acp-21-535-2021, 2021
Short summary
Short summary
The year 2019 was particularly rich for the stratospheric aerosol layer due to two volcanic eruptions (at Raikoke and Ulawun) and wildfire events. With satellite observations and models, we describe the exceptionally complex situation following the Raikoke eruption. The respective plume overwhelmed the Northern Hemisphere stratosphere in terms of aerosol load and resulted in the highest climate impact throughout the past decade.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
Silvia Bucci, Bernard Legras, Pasquale Sellitto, Francesco D'Amato, Silvia Viciani, Alessio Montori, Antonio Chiarugi, Fabrizio Ravegnani, Alexey Ulanovsky, Francesco Cairo, and Fred Stroh
Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, https://doi.org/10.5194/acp-20-12193-2020, 2020
Short summary
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
Short summary
The Asian monsoon is the most active region bringing surface compounds by convection to the stratosphere during summer. We study the transport pathways and the trapping within the upper-layer anticyclonic circulation. Above 15 km, the confinement can be represented by a uniform ascent over continental Asia of about 200 m per day and a uniform loss to other regions with a characteristic time of 2 weeks. We rule out the presence of a
chimneyproposed in previous studies over the Tibetan Plateau.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Aurélien Podglajen, Albert Hertzog, Riwal Plougonven, and Bernard Legras
Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020, https://doi.org/10.5194/acp-20-9331-2020, 2020
Short summary
Short summary
Thanks to the increase in resolution, numerical weather prediction models resolve a growing fraction of the gravity wave (GW) spectrum. Here, we assess the representation of Lagrangian GW fluctuations by comparing trajectories in the models to long-duration balloon observations. Most characteristics of the observed GW spectrum, such as near-inertial oscillations, are qualitatively present. However, the variability remains underestimated, emphasizing the continuous need for GW parameterizations.
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020, https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Short summary
High clouds are influential in tropical climate. Although reanalysis cloud fields are essentially model products, they are indirectly constrained by observations and offer global coverage with direct links to advanced water and energy cycle metrics, giving them many useful applications. We describe how high cloud fields are generated in reanalyses, assess their realism and reliability in the tropics, and evaluate how differences in these fields affect other aspects of the reanalysis state.
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020, https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020, https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Short summary
In July 2017 we flew three research flights around London during European Facility for Airborne Research (EUFAR) training. We made continuous measurements of concentrations of key pollutants (ozone, NOx, aerosol particles, CO, CO2 and methane) and meteorology, and we collected periodic samples of air to analyse for volatile organic compounds. We saw evidence that plumes of pollution from the city, strong local emissions and pollution from distant sources all contribute to regional pollution.
Stefan Lossow, Charlotta Högberg, Farahnaz Khosrawi, Gabriele P. Stiller, Ralf Bauer, Kaley A. Walker, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Norbert Glatthor, Thomas von Clarmann, Donal P. Murtagh, Jörg Steinwagner, Thomas Röckmann, and Roland Eichinger
Atmos. Meas. Tech., 13, 287–308, https://doi.org/10.5194/amt-13-287-2020, https://doi.org/10.5194/amt-13-287-2020, 2020
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Short summary
The tropical tropopause layer is an important atmospheric region right in between the troposphere and the stratosphere. We evaluate the representation of this layer in reanalyses data sets, which create a complete picture of the state of Earth's atmosphere using atmospheric modeling and available observations. The recent reanalyses show realistic temperatures in the tropical tropopause layer. However, where the temperature is lowest, the so-called cold point, the reanalyses are too cold.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Short summary
We present a trajectory-based model for simulating the transport of air parcels by convection. Our model extends the approach of existing models by explicitly simulating vertical updraft velocities inside the clouds and the time that an air parcel spends inside the convective event.
Daniel Kunkel, Peter Hoor, Thorsten Kaluza, Jörn Ungermann, Björn Kluschat, Andreas Giez, Hans-Christoph Lachnitt, Martin Kaufmann, and Martin Riese
Atmos. Chem. Phys., 19, 12607–12630, https://doi.org/10.5194/acp-19-12607-2019, https://doi.org/10.5194/acp-19-12607-2019, 2019
Short summary
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Henda Guermazi, Pasquale Sellitto, Juan Cuesta, Maxim Eremenko, Mathieu Lachatre, Sylvain Mailler, Elisa Carboni, Giuseppe Salerno, Tommaso Caltabiano, Laurent Menut, Mohamed Moncef Serbaji, Farhat Rekhiss, and Bernard Legras
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-341, https://doi.org/10.5194/amt-2019-341, 2019
Revised manuscript not accepted
Thomas von Clarmann and Norbert Glatthor
Atmos. Meas. Tech., 12, 5155–5160, https://doi.org/10.5194/amt-12-5155-2019, https://doi.org/10.5194/amt-12-5155-2019, 2019
Short summary
Short summary
To avoid unnecessary data traffic it is sometimes desirable to apply mean averaging kernels to mean profiles of atmospheric state variables. Unfortunately, the application of individual averaging kernels to individual profiles and subsequent averaging will, in general, lead to different results than averaging of the original profiles prior to the application of the mean averaging kernels. This effect is investigated and a correction scheme is proposed.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Corinna Kloss, Marc von Hobe, Michael Höpfner, Kaley A. Walker, Martin Riese, Jörn Ungermann, Birgit Hassler, Stefanie Kremser, and Greg E. Bodeker
Atmos. Meas. Tech., 12, 2129–2138, https://doi.org/10.5194/amt-12-2129-2019, https://doi.org/10.5194/amt-12-2129-2019, 2019
Short summary
Short summary
Are regional and seasonal averages from only a few satellite measurements, all aligned along a specific path, representative? Probably not. We present a method to adjust for the so-called
sampling biasand investigate its influence on derived long-term trends. The method is illustrated and validated for a long-lived trace gas (carbonyl sulfide), and it is shown that the influence of the sampling bias is too small to change scientific conclusions on long-term trends.
Lukas Krasauskas, Jörn Ungermann, Stefan Ensmann, Isabell Krisch, Erik Kretschmer, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 12, 853–872, https://doi.org/10.5194/amt-12-853-2019, https://doi.org/10.5194/amt-12-853-2019, 2019
Short summary
Short summary
Many limb sounder measurements from the same atmospheric region taken at different angles can be combined into a 3-D tomographic image of the atmosphere. Mathematically, this is a complex, computationally expensive, underdetermined problem that needs additional constraints (regularisation). We introduce an improved regularisation method based on physical properties of the atmosphere with a new irregular grid implementation. Simulated data tests show improved results and lower computational cost.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Yury M. Timofeyev, Sergei P. Smyshlyaev, Yana A. Virolainen, Alexander S. Garkusha, Alexander V. Polyakov, Maxim A. Motsakov, and Ole Kirner
Ann. Geophys., 36, 1495–1505, https://doi.org/10.5194/angeo-36-1495-2018, https://doi.org/10.5194/angeo-36-1495-2018, 2018
Short summary
Short summary
Atmospheric ozone plays a vital role, absorbing the ultraviolet solar radiation and heating the air, thus forming the stratosphere itself. If not absorbed, UV radiation would reach Earth's surface in amounts that are harmful to a variety of lifeforms. Climate change may lead to increasing ozone depletion, especially in the Arctic. Observation and prediction of the ozone variability are crucial for the investigation of its nature and the prediction of potential increase in surface UV radiation.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Thomas von Clarmann and Sören Johansson
Atmos. Chem. Phys., 18, 15363–15386, https://doi.org/10.5194/acp-18-15363-2018, https://doi.org/10.5194/acp-18-15363-2018, 2018
Short summary
Short summary
This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. Formation and sink processes are discussed, as well as spectral features and spectroscopic studies. Remote sensing, fluorescence, and mass spectroscopic measurement techniques are introduced, and global distributions and the annual cycle are discussed in the context of chlorine de-/activation.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Christian Borger, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes, and Xavier Calbet
Atmos. Meas. Tech., 11, 4981–5006, https://doi.org/10.5194/amt-11-4981-2018, https://doi.org/10.5194/amt-11-4981-2018, 2018
Short summary
Short summary
In this paper MUSICA IASI tropospheric water vapour profile retrievals are evaluated by performing theoretical error assessments and comparisons to GRUAN radiosonde measurements. We show that the vertical water vapour distribution is well captured from 1 km above the ground up to the tropopause. Largest error sources are unrecognized clouds and uncertainties in atmospheric temperature, which can reach about 25 %.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707–4723, https://doi.org/10.5194/amt-11-4707-2018, https://doi.org/10.5194/amt-11-4707-2018, 2018
Short summary
Short summary
We report differences in ozone retrievals in channels A and AB of the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which amount to up to 8 %. We provide strong evidence that the bias is caused by inconsistencies in different spectroscopic databases (MIPAS, HITRAN, GEISA). We show that a major part of the differences can be attributed to inconsistent air-broadening coefficients of the ozone lines contained in the databases.
Alexandra Laeng, Ellen Eckert, Thomas von Clarmann, Michael Kiefer, Daan Hubert, Gabriele Stiller, Norbert Glatthor, Manuel López-Puertas, Bernd Funke, Udo Grabowski, Johannes Plieninger, Sylvia Kellmann, Andrea Linden, Stefan Lossow, Arne Babenhauserheide, Lucien Froidevaux, and Kaley Walker
Atmos. Meas. Tech., 11, 4693–4705, https://doi.org/10.5194/amt-11-4693-2018, https://doi.org/10.5194/amt-11-4693-2018, 2018
Short summary
Short summary
MIPAS was an IR limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements of ozone during day and night. ESA recently released the new version 7 of Level 1 MIPAS spectra, which is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data from the KIT IMK processor. Our results indicate that MIPAS data are now even more suited for trend studies, alone or as part of merged data.
Isabell Krisch, Jörn Ungermann, Peter Preusse, Erik Kretschmer, and Martin Riese
Atmos. Meas. Tech., 11, 4327–4344, https://doi.org/10.5194/amt-11-4327-2018, https://doi.org/10.5194/amt-11-4327-2018, 2018
Short summary
Short summary
Three-dimensional temperature measurements of the atmosphere are required to address current research questions concerning the propagation of gravity waves. Limited angle tomography (LAT) with measurements from an airborne infrared limb imager can provide such 3-D temperature measurements. Wave parameters derived from such LAT measurements achieve an accuracy similar to that derived from full angle tomography, if the orientation of the flight path is optimized with respect to the gravity wave.
Anne Kleinert, Isabell Krisch, Jörn Ungermann, Albert Adibekyan, Berndt Gutschwager, and Christian Monte
Atmos. Meas. Tech., 11, 3871–3882, https://doi.org/10.5194/amt-11-3871-2018, https://doi.org/10.5194/amt-11-3871-2018, 2018
Short summary
Short summary
This study investigates the required accuracy of radiometric calibration sources for remote sensing instruments to properly resolve decadal trends of climate relevant trace species like ozone, water vapor and temperature. The required temperature knowledge of the calibration source is in the order of 100 mK. This is demonstrated by a Monte Carlo simulation. The results are confirmed using real measurements acquired by the GLORIA instrument.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389–8408, https://doi.org/10.5194/acp-18-8389-2018, https://doi.org/10.5194/acp-18-8389-2018, 2018
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Rui Song, Martin Kaufmann, Manfred Ern, Jörn Ungermann, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 11, 3161–3175, https://doi.org/10.5194/amt-11-3161-2018, https://doi.org/10.5194/amt-11-3161-2018, 2018
Short summary
Short summary
In this paper, we propose a new observation strategy, called
sweep mode, for a real three-dimensional tomographic reconstruction of gravity waves in the mesosphere and lower thermosphere by modifying the observation geometry of conventional limb-sounding measurements. It enhances the horizontal resolution that typical limb sounders can achieve while at the same time retaining the good vertical resolution they have.
Silvia Bucci, Paolo Cristofanelli, Stefano Decesari, Angela Marinoni, Silvia Sandrini, Johannes Größ, Alfred Wiedensohler, Chiara F. Di Marco, Eiko Nemitz, Francesco Cairo, Luca Di Liberto, and Federico Fierli
Atmos. Chem. Phys., 18, 5371–5389, https://doi.org/10.5194/acp-18-5371-2018, https://doi.org/10.5194/acp-18-5371-2018, 2018
Short summary
Short summary
This paper analyses some of the processes affecting PM levels over the Po Valley, one of the most polluted regions of Europe, during the 2012 summer campaigns. Under conditions of air transport from the Sahara, data show that desert dust can rapidly penetrate into the lower atmosphere, directly affecting the PM concentration at the ground. Processes of particles growth in high relative humidity and uplift of local soil particles, potentially affecting PM level, are also analysed.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Alexandra Laeng, Martin Kaufmann, Viktoria F. Sofieva, Lucien Froidevaux, Kaley A. Walker, and Masato Shiotani
Atmos. Meas. Tech., 11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, https://doi.org/10.5194/amt-11-2187-2018, 2018
Short summary
Short summary
This paper describes the inversion of O3 data from MIPAS middle atmosphere spectra which requires non-LTE. The O3 dataset comprises from 20 to 100 km, has a pole-to-pole latitude coverage, day and nighttime, and span from 2005 until 2012. A validation of the data against other satellite measurements and an overall description of O3 is also presented. This is an important dataset for the community and describes the major characteristics of stratospheric and mesospheric O3.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Daniel Kreyling, Ingo Wohltmann, Ralph Lehmann, and Markus Rex
Geosci. Model Dev., 11, 753–769, https://doi.org/10.5194/gmd-11-753-2018, https://doi.org/10.5194/gmd-11-753-2018, 2018
Short summary
Short summary
The Extrapolar SWIFT model is a fast yet accurate stratospheric ozone chemistry module for global climate models. The importance of feedbacks between the climate system and the ozone layer has been demonstrated in previous studies. Therefore it is desirable to include an interactive ozone layer in climate simulations. However, ensemble simulations in particular have strict computational constraints. The Extrapolar SWIFT model provides an interactive ozone layer with small computational costs.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Gerald Wetzel, Hermann Oelhaf, Michael Höpfner, Felix Friedl-Vallon, Andreas Ebersoldt, Thomas Gulde, Sebastian Kazarski, Oliver Kirner, Anne Kleinert, Guido Maucher, Hans Nordmeyer, Johannes Orphal, Roland Ruhnke, and Björn-Martin Sinnhuber
Atmos. Chem. Phys., 17, 14631–14643, https://doi.org/10.5194/acp-17-14631-2017, https://doi.org/10.5194/acp-17-14631-2017, 2017
Short summary
Short summary
We report the first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset. The main goal of these observations was to check the current understanding of stratospheric bromine chemistry and to estimate the amount of lower-stratospheric Bry. The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. The amount of Bry was estimated to be about 21–25 pptv in the lower stratosphere.
Rui Song, Martin Kaufmann, Jörn Ungermann, Manfred Ern, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 10, 4601–4612, https://doi.org/10.5194/amt-10-4601-2017, https://doi.org/10.5194/amt-10-4601-2017, 2017
Short summary
Short summary
Gravity waves (GWs) play an important role in atmospheric dynamics. In this work, we propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from
atmospheric soundings. It shows that one major advantage of this observation strategy is that much smaller-scale GWs can be observed.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Ingo Wohltmann, Ralph Lehmann, and Markus Rex
Atmos. Chem. Phys., 17, 10535–10563, https://doi.org/10.5194/acp-17-10535-2017, https://doi.org/10.5194/acp-17-10535-2017, 2017
Short summary
Short summary
We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere, and of the relevant reaction pathways and cycles. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Ingo Wohltmann, Ralph Lehmann, and Markus Rex
Geosci. Model Dev., 10, 2671–2689, https://doi.org/10.5194/gmd-10-2671-2017, https://doi.org/10.5194/gmd-10-2671-2017, 2017
Short summary
Short summary
The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate.
Annika Vogel, Jörn Ungermann, and Hendrik Elbern
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-308, https://doi.org/10.5194/acp-2017-308, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The potential for chemical state analysis at tropopause heights was investigated by combining airborne tomographic observations with a chemical data-assimilation system in form of a case study. Related developments include the use of potential vorticity for ozone initialization and flow-dependent horizontal correlations. This setup demonstrated substantial improvements in terms of spatial extend and alignment of atmospheric structures down to filamentary foldings along airmass boundaries.
Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Bianca Maria Dinelli, Anu Dudhia, Piera Raspollini, Norbert Glatthor, Udo Grabowski, Viktoria Sofieva, Lucien Froidevaux, Kaley A. Walker, and Claus Zehner
Atmos. Meas. Tech., 10, 1511–1518, https://doi.org/10.5194/amt-10-1511-2017, https://doi.org/10.5194/amt-10-1511-2017, 2017
Short summary
Short summary
A MIPAS instrument was flown in 2002–2012 on the Envisat satellite and measured atmospheric composition. There exist four processors retrieving atmospheric profiles from MIPAS spectra. We performed a mathematically clean merging of 2007–2008 datasets of ozone from these four processors. The merged product was compared with ozone datasets from ACE-FTS and MLS instruments. The advantages and the shortcomings of this merged product are discussed.
Mohamadou Diallo, Bernard Legras, Eric Ray, Andreas Engel, and Juan A. Añel
Atmos. Chem. Phys., 17, 3861–3878, https://doi.org/10.5194/acp-17-3861-2017, https://doi.org/10.5194/acp-17-3861-2017, 2017
Short summary
Short summary
We construct a new monthly zonal mean CO2 distribution from the upper troposphere to the stratosphere over the 2000–2010 period. The main features of the CO2 distribution are consistent with expected variability due to the transport of long-lived trace gases by the Brewer–Dobson circulation. The method used to construct this CO2 product is unique and should be useful for model and satellite validation in the upper troposphere and stratosphere.
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Norbert Glatthor, Michael Höpfner, Adrian Leyser, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, Sylvia Kellmann, Andrea Linden, Björn-Martin Sinnhuber, Gisèle Krysztofiak, and Kaley A. Walker
Atmos. Chem. Phys., 17, 2631–2652, https://doi.org/10.5194/acp-17-2631-2017, https://doi.org/10.5194/acp-17-2631-2017, 2017
Short summary
Short summary
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still rather sparse.
However, detailed knowledge of the OCS distribution is of scientific interest, because this trace gas is on one of the major sources of atmospheric sulfur, which is a prerequisite of the stratospheric aerosol layer. Under this aspect we present a comprehensive space-borne data set of global OCS concentrations covering the period from June 2002 to April 2012.
Bastiaan Jonkheid, Thomas Röckmann, Norbert Glatthor, Christof Janssen, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 6069–6079, https://doi.org/10.5194/amt-9-6069-2016, https://doi.org/10.5194/amt-9-6069-2016, 2016
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016, https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Michael Höpfner, Rainer Volkamer, Udo Grabowski, Michel Grutter, Johannes Orphal, Gabriele Stiller, Thomas von Clarmann, and Gerald Wetzel
Atmos. Chem. Phys., 16, 14357–14369, https://doi.org/10.5194/acp-16-14357-2016, https://doi.org/10.5194/acp-16-14357-2016, 2016
Short summary
Short summary
Ammonia (NH3) in the atmosphere is important because of its influence on aerosol and cloud formation and its increasing anthropogenic emissions. We report the first detection of NH3 in the upper troposphere by the analysis of infrared limb emission spectra measured by the MIPAS instrument on Envisat. We have found enhanced values of NH3 within the Asian summer monsoon upper troposphere, where it might contribute to the composition of the Asian tropopause aerosol layer.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Silvia Sandrini, Dominik van Pinxteren, Lara Giulianelli, Hartmut Herrmann, Laurent Poulain, Maria Cristina Facchini, Stefania Gilardoni, Matteo Rinaldi, Marco Paglione, Barbara J. Turpin, Francesca Pollini, Silvia Bucci, Nicola Zanca, and Stefano Decesari
Atmos. Chem. Phys., 16, 10879–10897, https://doi.org/10.5194/acp-16-10879-2016, https://doi.org/10.5194/acp-16-10879-2016, 2016
Short summary
Short summary
This paper deals with impactor measurements performed in the summer 2012 during the EU project PEGASOS campaign in the Po Valley, at an urban and a rural site. The paper tries to disentangle the effects of weather anomalies (temporal and spatial) from those of diverse emissions (NH3) and chemical processes on the formation of secondary aerosols in the region, with special focus on nocturnal ammonium nitrate formation and its implications (aqueous formation of secondary organic aerosol).
Claudia Di Biagio, Paola Formenti, Lionel Doppler, Cécile Gaimoz, Noel Grand, Gerard Ancellet, Jean-Luc Attié, Silvia Bucci, Philippe Dubuisson, Federico Fierli, Marc Mallet, and François Ravetta
Atmos. Chem. Phys., 16, 10591–10607, https://doi.org/10.5194/acp-16-10591-2016, https://doi.org/10.5194/acp-16-10591-2016, 2016
Short summary
Short summary
Pollution aerosols strongly influence the composition of the Western Mediterranean, but at present little is known on their optical properties. Here, we report observations of pollution aerosols measured during the TRAQA airborne campaign in summer 2012. Data from this study indicate a large variability of the absorption for pollution particles. This variability strongly influences their direct radiative effect, with possible consequences on the hydrological cycle in this part of the basin.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Pasquale Sellitto, Alcide di Sarra, Stefano Corradini, Marie Boichu, Hervé Herbin, Philippe Dubuisson, Geneviève Sèze, Daniela Meloni, Francesco Monteleone, Luca Merucci, Justin Rusalem, Giuseppe Salerno, Pierre Briole, and Bernard Legras
Atmos. Chem. Phys., 16, 6841–6861, https://doi.org/10.5194/acp-16-6841-2016, https://doi.org/10.5194/acp-16-6841-2016, 2016
Short summary
Short summary
We combine plume dispersion and radiative transfer modelling, and satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna (25–27 October 2013) on the optical/micro-physical properties of Mediterranean aerosols. Our results indicate that even relatively weak volcanic eruptions may produce an observable effect on the aerosol properties at the regional scale, with a significant impact on the regional radiative balance.
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016, https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
Short summary
We have analysed IR measurements of PMCs in the NH and SH from 2005 to 2012. This technique is sensitive to the total ice volume independent of particle size. For the first time, we have measured the total ice volume from the midlatitudes to the poles. The data indicate a layer of ice from 81 to 89 km and from the poles to 50–60º in each hemisphere, increasing near the poles. The ice density is larger in the NH than in the SH and located 1 km lower. PMCs also show a diurnal variation.
Ugo Cortesi, Samuele Del Bianco, Simone Ceccherini, Marco Gai, Bianca Maria Dinelli, Elisa Castelli, Hermann Oelhaf, Wolfgang Woiwode, Michael Höpfner, and Daniel Gerber
Atmos. Meas. Tech., 9, 2267–2289, https://doi.org/10.5194/amt-9-2267-2016, https://doi.org/10.5194/amt-9-2267-2016, 2016
Matthäus Kiel, Frank Hase, Thomas Blumenstock, and Oliver Kirner
Atmos. Meas. Tech., 9, 2223–2239, https://doi.org/10.5194/amt-9-2223-2016, https://doi.org/10.5194/amt-9-2223-2016, 2016
Bernadette Rosati, Erik Herrmann, Silvia Bucci, Federico Fierli, Francesco Cairo, Martin Gysel, Ralf Tillmann, Johannes Größ, Gian Paolo Gobbi, Luca Di Liberto, Guido Di Donfrancesco, Alfred Wiedensohler, Ernest Weingartner, Annele Virtanen, Thomas F. Mentel, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4539–4554, https://doi.org/10.5194/acp-16-4539-2016, https://doi.org/10.5194/acp-16-4539-2016, 2016
Short summary
Short summary
We present vertical profiles of aerosol optical properties, which were explored within the planetary boundary layer in a case study in 2012 in the Po Valley region. A comparison of in situ measurements recorded aboard a Zeppelin NT and ground-based remote-sensing data was performed yielding good agreement. Additionally, the role of ambient relative humidity for the aerosol particles' optical properties was investigated.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Aurélien Podglajen, Riwal Plougonven, Albert Hertzog, and Bernard Legras
Atmos. Chem. Phys., 16, 3881–3902, https://doi.org/10.5194/acp-16-3881-2016, https://doi.org/10.5194/acp-16-3881-2016, 2016
Short summary
Short summary
The Weather Research and Forecast model is used to simulate a large-scale tropical tropopause layer (TTL) cirrus. Validated with satellite observations, the simulation shows that several clouds successively form due to a large-scale uplift initiated by the intrusion of air from the midlatitudes. The simulated cloud field is found as sensitive to the initial condition as it is to the choice of the microphysics parametrisation. The cloud impacts on the radiative and water budgets are estimated.
M. Chirkov, G. P. Stiller, A. Laeng, S. Kellmann, T. von Clarmann, C. D. Boone, J. W. Elkins, A. Engel, N. Glatthor, U. Grabowski, C. M. Harth, M. Kiefer, F. Kolonjari, P. B. Krummel, A. Linden, C. R. Lunder, B. R. Miller, S. A. Montzka, J. Mühle, S. O'Doherty, J. Orphal, R. G. Prinn, G. Toon, M. K. Vollmer, K. A. Walker, R. F. Weiss, A. Wiegele, and D. Young
Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, https://doi.org/10.5194/acp-16-3345-2016, 2016
Short summary
Short summary
HCFC-22 global distributions from MIPAS measurements for 2005 to 2012 are presented. Tropospheric trends are in good agreement with ground-based observations. A layer of enhanced HCFC-22 in the upper tropospheric tropics and northern subtropics is identified to come from Asian sources uplifted in the Asian monsoon. Stratospheric distributions provide show seasonal, semi-annual, and QBO-related variations. Hemispheric asymmetries of trends hint towards a change in the stratospheric circulation.
Ann-Sophie Tissier and Bernard Legras
Atmos. Chem. Phys., 16, 3383–3398, https://doi.org/10.5194/acp-16-3383-2016, https://doi.org/10.5194/acp-16-3383-2016, 2016
Short summary
Short summary
Transit properties across the TTL are studied using forward and backward Lagrangian trajectories between cloud tops and the reference surface 380 K. The tropical domain is subdivided into 11 subregions according to the distribution of land and convection. Due to the good agreement between forward and backward statistics, we estimate the contribution of each region to the upward mass flux across the 380 K surface, the vertical distribution of convective sources and of transit times over 2005–2008.
Hideaki Nakajima, Ingo Wohltmann, Tobias Wegner, Masanori Takeda, Michael C. Pitts, Lamont R. Poole, Ralph Lehmann, Michelle L. Santee, and Markus Rex
Atmos. Chem. Phys., 16, 3311–3325, https://doi.org/10.5194/acp-16-3311-2016, https://doi.org/10.5194/acp-16-3311-2016, 2016
Short summary
Short summary
This paper presents the first trial of analyzing amount of chlorine activation on different PSC compositions by using match analysis on trajectories initiated from PSC locations identified by CALIPSO/CALIOP measurements. The measured minor species such as HCl and ClO by MLS are compared with ATLAS chemistry-transport model (CTM) results. PSC growth to NAT, NAT/STS mixture, and ice were identified by different temperature decrease histories on trajectories.
P. Sellitto and B. Legras
Atmos. Meas. Tech., 9, 115–132, https://doi.org/10.5194/amt-9-115-2016, https://doi.org/10.5194/amt-9-115-2016, 2016
Short summary
Short summary
This study investigates the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulfate aerosol layers. The dependence of the sulfate spectral signature, between 700 and 1200 cm−1, on the sulfuric acid mixing ratio, effective number concentration and radius, as well as the role of interfering parameters, is analysed. The information content of broadband and high-spectral-resolution observations is finally discussed.
T. Dinh, A. Podglajen, A. Hertzog, B. Legras, and R. Plougonven
Atmos. Chem. Phys., 16, 35–46, https://doi.org/10.5194/acp-16-35-2016, https://doi.org/10.5194/acp-16-35-2016, 2016
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
Atmos. Meas. Tech., 8, 4719–4734, https://doi.org/10.5194/amt-8-4719-2015, https://doi.org/10.5194/amt-8-4719-2015, 2015
Short summary
Short summary
The Geostationary Emission Explorer for Europe (G3E) is a mission concept for a greenhouse gas sounder in geostationary orbit. It is designed to provide column-average concentrations of carbon dioxide, methane, and carbon monoxide with high spatial and 2-hour temporal resolution throughout the central European continent. The prospective data density, precision and accuracy suggest G3E as a key component of a future carbon emission monitoring system.
J. Plieninger, T. von Clarmann, G. P. Stiller, U. Grabowski, N. Glatthor, S. Kellmann, A. Linden, F. Haenel, M. Kiefer, M. Höpfner, A. Laeng, and S. Lossow
Atmos. Meas. Tech., 8, 4657–4670, https://doi.org/10.5194/amt-8-4657-2015, https://doi.org/10.5194/amt-8-4657-2015, 2015
Short summary
Short summary
We present our revised CH4 and N2O profiles derived from MIPAS-ENVISAT spectra, which are now available for the entire measurement period. We describe the retrieval of the profiles and discuss the improvements compared to earlier versions and their effect on the mixing ratios. We analyse the averaging kernels and the resolution of the profiles. An error discussion for both gases is given.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
T. Guggenmoser, J. Blank, A. Kleinert, T. Latzko, J. Ungermann, F. Friedl-Vallon, M. Höpfner, M. Kaufmann, E. Kretschmer, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, M. Riese, H. Rongen, M. K. Sha, O. Sumińska-Ebersoldt, and V. Tan
Atmos. Meas. Tech., 8, 3147–3161, https://doi.org/10.5194/amt-8-3147-2015, https://doi.org/10.5194/amt-8-3147-2015, 2015
Short summary
Short summary
The plane-carried Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) measures the thermal radiation emitted by gases and particles in the atmosphere, in a height range of about 5-20 km. In between these measurements, GLORIA is pointed at known radiation sources for calibration. Noise in these calibration measurements can lead to artefacts in the final products. In this paper, we present new techniques which exploit GLORIA's imaging capabilities to reduce these noise effects.
G. Wetzel, H. Oelhaf, M. Birk, A. de Lange, A. Engel, F. Friedl-Vallon, O. Kirner, A. Kleinert, G. Maucher, H. Nordmeyer, J. Orphal, R. Ruhnke, B.-M. Sinnhuber, and P. Vogt
Atmos. Chem. Phys., 15, 8065–8076, https://doi.org/10.5194/acp-15-8065-2015, https://doi.org/10.5194/acp-15-8065-2015, 2015
T. von Clarmann, N. Glatthor, and J. Plieninger
Atmos. Meas. Tech., 8, 2749–2757, https://doi.org/10.5194/amt-8-2749-2015, https://doi.org/10.5194/amt-8-2749-2015, 2015
Short summary
Short summary
We propose a user-friendly representation of remotely sensed vertical profiles of atmospheric constituents. The data are provided on a fixed pressure grid coarse enough to allow a virtually unconstrained retrieval. Thus the data user need not apply the averaging kernel. To avoid data interpolation, the grid is chosen to be a subset of the pressure grid often used in the modelling community. For representation, the profiles have been transformed to rectangular base functions.
M. Höpfner, C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller
Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, https://doi.org/10.5194/acp-15-7017-2015, 2015
E. Kretschmer, M. Bachner, J. Blank, R. Dapp, A. Ebersoldt, F. Friedl-Vallon, T. Guggenmoser, T. Gulde, V. Hartmann, R. Lutz, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, G. Schardt, C. Schmitt, A. Schönfeld, and V. Tan
Atmos. Meas. Tech., 8, 2543–2553, https://doi.org/10.5194/amt-8-2543-2015, https://doi.org/10.5194/amt-8-2543-2015, 2015
W. Woiwode, O. Sumińska-Ebersoldt, H. Oelhaf, M. Höpfner, G. V. Belyaev, A. Ebersoldt, F. Friedl-Vallon, J.-U. Grooß, T. Gulde, M. Kaufmann, A. Kleinert, M. Krämer, E. Kretschmer, T. Kulessa, G. Maucher, T. Neubert, C. Piesch, P. Preusse, M. Riese, H. Rongen, C. Sartorius, G. Schardt, A. Schönfeld, D. Schuettemeyer, M. K. Sha, F. Stroh, J. Ungermann, C. M. Volk, and J. Orphal
Atmos. Meas. Tech., 8, 2509–2520, https://doi.org/10.5194/amt-8-2509-2015, https://doi.org/10.5194/amt-8-2509-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
C. Piesch, C. Sartorius, F. Friedl-Vallon, T. Gulde, S. Heger, E. Kretschmer, G. Maucher, H. Nordmeyer, J. Barthel, A. Ebersoldt, F. Graf, F. Hase, A. Kleinert, T. Neubert, and H. J. Schillings
Atmos. Meas. Tech., 8, 1773–1787, https://doi.org/10.5194/amt-8-1773-2015, https://doi.org/10.5194/amt-8-1773-2015, 2015
Short summary
Short summary
The paper shows the design and the technics of the GLORIA spectrometer, the dedicated cooling system, and the performance during operation on HALO aircraft.
R. Schofield, L. M. Avallone, L. E. Kalnajs, A. Hertzog, I. Wohltmann, and M. Rex
Atmos. Chem. Phys., 15, 2463–2472, https://doi.org/10.5194/acp-15-2463-2015, https://doi.org/10.5194/acp-15-2463-2015, 2015
Short summary
Short summary
Ozone measurements onboard three Concordiasi balloons flown in the stratosphere in
the Antarctic spring of 2010 are presented. These measurements are the first long-duration in situ measurements of Antarctic springtime stratospheric ozone. By matching air parcels, ozone loss rates where derived. Downwind of the Antarctic Peninsula, very large ozone losses of up to 230 ppb per day or 16 ppbv per sunlit hour were observed. These high rates are consistent with almost complete chlorine activation.
O. Kirner, R. Müller, R. Ruhnke, and H. Fischer
Atmos. Chem. Phys., 15, 2019–2030, https://doi.org/10.5194/acp-15-2019-2015, https://doi.org/10.5194/acp-15-2019-2015, 2015
Short summary
Short summary
We use multi-year simulations of the chemistry--climate model EMAC to investigate
the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss. Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion and chemistry on NAT particles less than 0.5 DU.
N. Glatthor, M. Höpfner, G. P. Stiller, T. von Clarmann, B. Funke, S. Lossow, E. Eckert, U. Grabowski, S. Kellmann, A. Linden, K. A. Walker, and A. Wiegele
Atmos. Chem. Phys., 15, 563–582, https://doi.org/10.5194/acp-15-563-2015, https://doi.org/10.5194/acp-15-563-2015, 2015
M. Kaufmann, J. Blank, T. Guggenmoser, J. Ungermann, A. Engel, M. Ern, F. Friedl-Vallon, D. Gerber, J. U. Grooß, G. Guenther, M. Höpfner, A. Kleinert, E. Kretschmer, Th. Latzko, G. Maucher, T. Neubert, H. Nordmeyer, H. Oelhaf, F. Olschewski, J. Orphal, P. Preusse, H. Schlager, H. Schneider, D. Schuettemeyer, F. Stroh, O. Suminska-Ebersoldt, B. Vogel, C. M. Volk, W. Woiwode, and M. Riese
Atmos. Meas. Tech., 8, 81–95, https://doi.org/10.5194/amt-8-81-2015, https://doi.org/10.5194/amt-8-81-2015, 2015
A. Kleinert, F. Friedl-Vallon, T. Guggenmoser, M. Höpfner, T. Neubert, R. Ribalda, M. K. Sha, J. Ungermann, J. Blank, A. Ebersoldt, E. Kretschmer, T. Latzko, H. Oelhaf, F. Olschewski, and P. Preusse
Atmos. Meas. Tech., 7, 4167–4184, https://doi.org/10.5194/amt-7-4167-2014, https://doi.org/10.5194/amt-7-4167-2014, 2014
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
F. Friedl-Vallon, T. Gulde, F. Hase, A. Kleinert, T. Kulessa, G. Maucher, T. Neubert, F. Olschewski, C. Piesch, P. Preusse, H. Rongen, C. Sartorius, H. Schneider, A. Schönfeld, V. Tan, N. Bayer, J. Blank, R. Dapp, A. Ebersoldt, H. Fischer, F. Graf, T. Guggenmoser, M. Höpfner, M. Kaufmann, E. Kretschmer, T. Latzko, H. Nordmeyer, H. Oelhaf, J. Orphal, M. Riese, G. Schardt, J. Schillings, M. K. Sha, O. Suminska-Ebersoldt, and J. Ungermann
Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, https://doi.org/10.5194/amt-7-3565-2014, 2014
L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker
Atmos. Chem. Phys., 14, 9555–9566, https://doi.org/10.5194/acp-14-9555-2014, https://doi.org/10.5194/acp-14-9555-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, and P. Bernath
Atmos. Chem. Phys., 14, 6545–6555, https://doi.org/10.5194/acp-14-6545-2014, https://doi.org/10.5194/acp-14-6545-2014, 2014
M. Rex, I. Wohltmann, T. Ridder, R. Lehmann, K. Rosenlof, P. Wennberg, D. Weisenstein, J. Notholt, K. Krüger, V. Mohr, and S. Tegtmeier
Atmos. Chem. Phys., 14, 4827–4841, https://doi.org/10.5194/acp-14-4827-2014, https://doi.org/10.5194/acp-14-4827-2014, 2014
S. Bucci, C. Cagnazzo, F. Cairo, L. Di Liberto, and F. Fierli
Atmos. Chem. Phys., 14, 4369–4381, https://doi.org/10.5194/acp-14-4369-2014, https://doi.org/10.5194/acp-14-4369-2014, 2014
E. Eckert, T. von Clarmann, M. Kiefer, G. P. Stiller, S. Lossow, N. Glatthor, D. A. Degenstein, L. Froidevaux, S. Godin-Beekmann, T. Leblanc, S. McDermid, M. Pastel, W. Steinbrecht, D. P. J. Swart, K. A. Walker, and P. F. Bernath
Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, https://doi.org/10.5194/acp-14-2571-2014, 2014
P. Bohlinger, B.-M. Sinnhuber, R. Ruhnke, and O. Kirner
Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014, https://doi.org/10.5194/acp-14-1679-2014, 2014
H. Sagawa, T. O. Sato, P. Baron, E. Dupuy, N. Livesey, J. Urban, T. von Clarmann, A. de Lange, G. Wetzel, B. J. Connor, A. Kagawa, D. Murtagh, and Y. Kasai
Atmos. Meas. Tech., 6, 3325–3347, https://doi.org/10.5194/amt-6-3325-2013, https://doi.org/10.5194/amt-6-3325-2013, 2013
F. Olschewski, A. Ebersoldt, F. Friedl-Vallon, B. Gutschwager, J. Hollandt, A. Kleinert, C. Monte, C. Piesch, P. Preusse, C. Rolf, P. Steffens, and R. Koppmann
Atmos. Meas. Tech., 6, 3067–3082, https://doi.org/10.5194/amt-6-3067-2013, https://doi.org/10.5194/amt-6-3067-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
J. Ungermann, L. L. Pan, C. Kalicinsky, F. Olschewski, P. Knieling, J. Blank, K. Weigel, T. Guggenmoser, F. Stroh, L. Hoffmann, and M. Riese
Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, https://doi.org/10.5194/acp-13-10517-2013, 2013
M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, and C. D. Boone
Atmos. Chem. Phys., 13, 10405–10423, https://doi.org/10.5194/acp-13-10405-2013, https://doi.org/10.5194/acp-13-10405-2013, 2013
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
M. Bolot, B. Legras, and E. J. Moyer
Atmos. Chem. Phys., 13, 7903–7935, https://doi.org/10.5194/acp-13-7903-2013, https://doi.org/10.5194/acp-13-7903-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
C. Brühl, J. Lelieveld, M. Höpfner, and H. Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-11395-2013, https://doi.org/10.5194/acpd-13-11395-2013, 2013
Revised manuscript not accepted
I. Wohltmann, T. Wegner, R. Müller, R. Lehmann, M. Rex, G. L. Manney, M. L. Santee, P. Bernath, O. Sumińska-Ebersoldt, F. Stroh, M. von Hobe, C. M. Volk, E. Hösen, F. Ravegnani, A. Ulanovsky, and V. Yushkov
Atmos. Chem. Phys., 13, 3909–3929, https://doi.org/10.5194/acp-13-3909-2013, https://doi.org/10.5194/acp-13-3909-2013, 2013
C. Adams, K. Strong, X. Zhao, A. E. Bourassa, W. H. Daffer, D. Degenstein, J. R. Drummond, E. E. Farahani, A. Fraser, N. D. Lloyd, G. L. Manney, C. A. McLinden, M. Rex, C. Roth, S. E. Strahan, K. A. Walker, and I. Wohltmann
Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, https://doi.org/10.5194/acp-13-611-2013, 2013
J. Ungermann
Atmos. Meas. Tech., 6, 15–32, https://doi.org/10.5194/amt-6-15-2013, https://doi.org/10.5194/amt-6-15-2013, 2013
M. Diallo, B. Legras, and A. Chédin
Atmos. Chem. Phys., 12, 12133–12154, https://doi.org/10.5194/acp-12-12133-2012, https://doi.org/10.5194/acp-12-12133-2012, 2012
M. Reverdy, V. Noel, H. Chepfer, and B. Legras
Atmos. Chem. Phys., 12, 12081–12101, https://doi.org/10.5194/acp-12-12081-2012, https://doi.org/10.5194/acp-12-12081-2012, 2012
S. Kellmann, T. von Clarmann, G. P. Stiller, E. Eckert, N. Glatthor, M. Höpfner, M. Kiefer, J. Orphal, B. Funke, U. Grabowski, A. Linden, G. S. Dutton, and J. W. Elkins
Atmos. Chem. Phys., 12, 11857–11875, https://doi.org/10.5194/acp-12-11857-2012, https://doi.org/10.5194/acp-12-11857-2012, 2012
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Development of a high-spatial-resolution annual emission inventory of greenhouse gases from open straw burning in Northeast China from 2001 to 2020
Quantifying large methane emissions from the Nord Stream pipeline gas leak of September 2022 using IASI satellite observations and inverse modelling
Automated detection of regions with persistently enhanced methane concentrations using Sentinel-5 Precursor satellite data
Biomass burning CO emissions: exploring insights through TROPOMI-derived emissions and emission coefficients
Measurement report: Combined use of MAX-DOAS and AERONET ground-based measurements in Montevideo, Uruguay, for the detection of distant biomass burning
Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements
Evaluation of the WRF-Chem Performance for gaseous pollutants over the United Arab Emirates
Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method
Identifying episodic carbon monoxide emission events in the MOPITT measurement dataset
Quantifying effects of long-range transport of NO2 over Delhi using back trajectories and satellite data
Measurement report: Ammonia in Paris derived from ground-based open-path and satellite observations
Anthropogenic CO2 emission estimates in the Tokyo metropolitan area from ground-based CO2 column observations
Characterizing the tropospheric water vapor spatial variation and trend using 2007–2018 COSMIC radio occultation and ECMWF reanalysis data
Detecting nitrogen oxide emissions in Qatar and quantifying emission factors of gas-fired power plants – a 4-year study
Identifying and accounting for the Coriolis effect in satellite NO2 observations and emission estimates
Characterisations of Europe's integrated water vapour and assessments of atmospheric reanalyses using more than 2 decades of ground-based GPS
Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
NH3 spatiotemporal variability over Paris, Mexico City, and Toronto, and its link to PM2.5 during pollution events
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of formaldehyde and nitrogen dioxide at three sites in Asia and comparison with the global chemistry transport model CHASER
Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method
Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder
Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data
Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study
Volcanic SO2 layer height by TROPOMI/S5P: evaluation against IASI/MetOp and CALIOP/CALIPSO observations
Spaceborne tropospheric nitrogen dioxide (NO2) observations from 2005–2020 over the Yangtze River Delta (YRD), China: variabilities, implications, and drivers
Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates
Influence of springtime atmospheric circulation types on the distribution of air pollutants in the Arctic
Technical note: Evaluation of profile retrievals of aerosols and trace gases for MAX-DOAS measurements under different aerosol scenarios based on radiative transfer simulations
Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode
The reduction in C2H6 from 2015 to 2020 over Hefei, eastern China, points to air quality improvement in China
Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation
The impact of Los Angeles Basin pollution and stratospheric intrusions on the surrounding San Gabriel Mountains as seen by surface measurements, lidar, and numerical models
Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19
Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations
Spatial distribution of enhanced BrO and its relation to meteorological parameters in Arctic and Antarctic sea ice regions
Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data
A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland
The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO2 surface fluxes over Australia using a variational assimilation scheme
Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2
Observational evidence of moistening the lowermost stratosphere via isentropic mixing across the subtropical jet
Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution
NH3 emissions from large point sources derived from CrIS and IASI satellite observations
Diurnal cycle of short-term fluctuations of integrated water vapour above Switzerland
Retrieval of total column and surface NO2 from Pandora zenith-sky measurements
MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrument observations
Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis
Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites
Variability of bulk water vapor content in the marine cloudy boundary layers from microwave and near-infrared imagery
Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations
Satellite-derived sulfur dioxide (SO2) emissions from the 2014–2015 Holuhraun eruption (Iceland)
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024, https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Short summary
The leaks from the Nord Stream gas pipelines in September 2022 released a large amount of methane (CH4) into the atmosphere. We provide observational data from a satellite instrument that shows a large CH4 plume over the North Sea off the coast of Scandinavia. We use this together with atmospheric models to quantify the CH4 leaked into the atmosphere from the pipelines. We find that 219–427 Gg CH4 was emitted, making this the largest individual fossil-fuel-related CH4 leak on record.
Steffen Vanselow, Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Hartmut Boesch, and John P. Burrows
Atmos. Chem. Phys., 24, 10441–10473, https://doi.org/10.5194/acp-24-10441-2024, https://doi.org/10.5194/acp-24-10441-2024, 2024
Short summary
Short summary
We developed an algorithm to automatically detect persistent methane source regions, to quantify their emissions and to determine their source types, by analyzing TROPOMI data from 2018–2021. The over 200 globally detected natural and anthropogenic source regions include small-scale point sources such as individual coal mines and larger-scale source regions such as wetlands and large oil and gas fields.
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024, https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Short summary
Satellite-derived CO emissions provide new insights into the understanding of global CO emission rates from wildfires. We use TROPOMI satellite data to create a global inventory database of wildfire CO emissions. These satellite-derived wildfire emissions are used for the evaluation and improvement of existing fire emission inventories and to examine how the wildfire CO emissions have changed over the past 2 decades.
Matías Osorio, Alejandro Agesta, Tim Bösch, Nicolás Casaballe, Andreas Richter, Leonardo M. A. Alvarado, and Erna Frins
Atmos. Chem. Phys., 24, 7447–7465, https://doi.org/10.5194/acp-24-7447-2024, https://doi.org/10.5194/acp-24-7447-2024, 2024
Short summary
Short summary
This study concerns the detection and quantification of long-transport emissions of a biomass burning event, which represents a major source of air pollutants, due to the release of large amounts of aerosols and chemical species into the atmosphere. The quantification was done using ground-based observations (which play an important role in assessing the abundance of trace gases and aerosols) over Montevideo (Uruguay) and using satellite observations.
Pascal Hedelt, Jens Reichardt, Felix Lauermann, Benjamin Weiß, Nicolas Theys, Alberto Redondas, Africa Barreto, Omaira Garcia, and Diego Loyola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1710, https://doi.org/10.5194/egusphere-2024-1710, 2024
Short summary
Short summary
The 2021 volcanic eruption of Tajogaite on La Palma is investigated using ground-based and satellite measurements. In addition, the atmospheric transport of the volcanic cloud towards Europe isstudied in detail. The amount of SO2 released during the eruption as well as the height of the volcanic plume is in excellent agreement between the different measurements. Furthermore, volcanic aerosol microphysical properties could be retrieved using a new retrieval approach based on Lidar measurements.
Yesobu Yarragunta, Diana Francis, Ricardo Fonseca, and Narendra Nelli
EGUsphere, https://doi.org/10.5194/egusphere-2024-959, https://doi.org/10.5194/egusphere-2024-959, 2024
Short summary
Short summary
This study consists of a comprehensive evaluation of the WRF-Chem model for concentrations of gaseous pollutants against satellite observations over the United Arab Emirates. The model showed high skills in simulating the observed concentrations of ozone and NO2, however it has discrepancies in reproducing the observed CO concentrations with an overestimation in summer and underestimation in winter. The model showed high performance in terms of meteorological parameters.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024, https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
Short summary
The MOPITT instrument has been monitoring carbon monoxide (CO) since March 2000. This dataset has been used for many applications; however, episodic emission events, which release large amounts of CO into the atmosphere, are a major source of uncertainty. This study presents a method for identifying these events by determining measurements that are unlikely to have typically arisen. The distribution and frequency of these flagged measurements in the MOPITT dataset are presented and discussed.
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Hirofumi Ohyama, Matthias M. Frey, Isamu Morino, Kei Shiomi, Masahide Nishihashi, Tatsuya Miyauchi, Hiroko Yamada, Makoto Saito, Masanobu Wakasa, Thomas Blumenstock, and Frank Hase
Atmos. Chem. Phys., 23, 15097–15119, https://doi.org/10.5194/acp-23-15097-2023, https://doi.org/10.5194/acp-23-15097-2023, 2023
Short summary
Short summary
We conducted a field campaign for CO2 column measurements in the Tokyo metropolitan area with three ground-based Fourier transform spectrometers. The model simulations using prior CO2 fluxes were generally in good agreement with the observations. We developed an urban-scale inversion system in which spatially resolved CO2 fluxes and a scaling factor of large point source emissions were estimated. The posterior total CO2 emissions agreed with emission inventories within the posterior uncertainty.
Xi Shao, Shu-Peng Ho, Xin Jing, Xinjia Zhou, Yong Chen, Tung-Chang Liu, Bin Zhang, and Jun Dong
Atmos. Chem. Phys., 23, 14187–14218, https://doi.org/10.5194/acp-23-14187-2023, https://doi.org/10.5194/acp-23-14187-2023, 2023
Short summary
Short summary
Atmospheric water vapor plays an essential role in the global energy balance, hydrological cycle, and climate system. This paper characterizes and compares the global, latitudinal, and regional variabilities of COSMIC and ERA5 water vapor distribution, as well as the seasonality and long-term trends at selected pressure levels from 2007 to 2018. Evaluation of spatiotemporal variabilities of atmospheric water vapor ensures the qualities of COSMIC and reanalysis water vapor for climate studies.
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Jonilda Kushta, Theodoros Christoudias, I. Safak Bayram, and Jean Sciare
Atmos. Chem. Phys., 23, 13565–13583, https://doi.org/10.5194/acp-23-13565-2023, https://doi.org/10.5194/acp-23-13565-2023, 2023
Short summary
Short summary
We use four years (2019–2022) of TROPOMI NO2 data to map NOx emissions in Qatar. We estimate average monthly emissions for the country and industrial facilities and derive an emission factor for the power sector. Monthly emissions have a weekly cycle reflecting the social norms in Qatar and an annual cycle consistent with the electricity production by gas-fired power plants. Their mean value is lower than the NOx emissions in global inventories but similar to the emissions reported for 2007.
Daniel A. Potts, Roger Timmis, Emma J. S. Ferranti, and Joshua D. Vande Hey
Atmos. Chem. Phys., 23, 4577–4593, https://doi.org/10.5194/acp-23-4577-2023, https://doi.org/10.5194/acp-23-4577-2023, 2023
Short summary
Short summary
With the launch of the TROPOspheric Monitoring Instrument (TROPOMI) in 2017, it is now possible to observe pollutants emitted from individual industrial facilities on a daily basis around the globe. By using observations of nitrogen dioxide (NO2) from 16 different industrial sites, we show how the Coriolis effect influences the trajectory of these emission plumes as well as how the additional curvature can lead to a substantial underestimation of the calculated emissions.
Peng Yuan, Roeland Van Malderen, Xungang Yin, Hannes Vogelmann, Weiping Jiang, Joseph Awange, Bernhard Heck, and Hansjörg Kutterer
Atmos. Chem. Phys., 23, 3517–3541, https://doi.org/10.5194/acp-23-3517-2023, https://doi.org/10.5194/acp-23-3517-2023, 2023
Short summary
Short summary
Water vapour plays an important role in various weather and climate processes. However, due to its large spatiotemporal variability, its high-accuracy quantification remains a challenge. In this study, 20+ years of GPS-derived integrated water vapour (IWV) retrievals in Europe were obtained. They were then used to characterise the temporal features of Europe's IWV and assess six atmospheric reanalyses. Results show that ERA5 outperforms the other reanalyses at most temporal scales.
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023, https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Short summary
This study estimated the daily seamless 10 km ambient gaseous pollutants (NO2, SO2, and CO) across China using machine learning with extensive input variables measured on monitors, satellites, and models. Our dataset yields a high data quality via cross-validation at varying spatiotemporal scales and outperforms most previous related studies, making it most helpful to future (especially short-term) air pollution and environmental health-related studies.
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William C. Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
Atmos. Chem. Phys., 22, 12907–12922, https://doi.org/10.5194/acp-22-12907-2022, https://doi.org/10.5194/acp-22-12907-2022, 2022
Short summary
Short summary
Large cities can experience high levels of fine particulate matter (PM2.5) pollution linked to ammonia (NH3) mainly emitted from agricultural activities. Using a combination of PM2.5 and NH3 measurements from in situ instruments, satellite infrared spectrometers, and atmospheric model simulations, we have demonstrated the role of NH3 and meteorological conditions on pollution events occurring over Paris, Toronto, and Mexico City.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, Manish Naja, and Al Mashroor Fatmi
Atmos. Chem. Phys., 22, 12559–12589, https://doi.org/10.5194/acp-22-12559-2022, https://doi.org/10.5194/acp-22-12559-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) and formaldehyde (HCHO) are essential trace graces regulating tropospheric ozone chemistry. These trace constituents are measured using an optical passive remote sensing technique. In addition, NO2 and HCHO are simulated with a computer model and evaluated against the observations. Such evaluations are essential to assess model uncertainties and improve their predictability. The results yielded good agreement between the two datasets with some discrepancies.
Qiansi Tu, Matthias Schneider, Frank Hase, Farahnaz Khosrawi, Benjamin Ertl, Jaroslaw Necki, Darko Dubravica, Christopher J. Diekmann, Thomas Blumenstock, and Dianjun Fang
Atmos. Chem. Phys., 22, 9747–9765, https://doi.org/10.5194/acp-22-9747-2022, https://doi.org/10.5194/acp-22-9747-2022, 2022
Short summary
Short summary
Three-year satellite observations and high-resolution model forecast of XCH4 are used to derive CH4 emissions in the USCB region, Poland – a region of intense coal mining activities. The wind-assigned anomalies for two opposite wind directions are calculated and the estimated emission rates are very close to the inventories and in reasonable agreement with the previous studies. Our method is quite robust and can serve as a simple method to estimate CH4 or CO2 emissions for other regions.
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022, https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022, https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary
Short summary
We study the interannual variability in Australian carbon fluxes for 2015–2019 derived from OCO-2 satellite data. Our results suggest that Australia's semi-arid ecosystems are highly responsive to variations in climate drivers such as rainfall and temperature. We found that high rainfall and low temperatures recorded in 2016 led to an anomalous carbon sink over savanna and sparsely vegetated regions, while unprecedented dry and hot weather in 2019 led to anomalous carbon release.
Tianlang Zhao, Jingqiu Mao, William R. Simpson, Isabelle De Smedt, Lei Zhu, Thomas F. Hanisco, Glenn M. Wolfe, Jason M. St. Clair, Gonzalo González Abad, Caroline R. Nowlan, Barbara Barletta, Simone Meinardi, Donald R. Blake, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Chem. Phys., 22, 7163–7178, https://doi.org/10.5194/acp-22-7163-2022, https://doi.org/10.5194/acp-22-7163-2022, 2022
Short summary
Short summary
Monitoring formaldehyde (HCHO) can help us understand Arctic vegetation change. Here, we compare satellite data and model and show that Alaska summertime HCHO is largely dominated by a background from methane oxidation during mild wildfire years and is dominated by wildfire (largely from direct emission of fire) during strong fire years. Consequently, it is challenging to use satellite HCHO to study vegetation change in the Arctic region.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Hao Yin, Youwen Sun, Justus Notholt, Mathias Palm, and Cheng Liu
Atmos. Chem. Phys., 22, 4167–4185, https://doi.org/10.5194/acp-22-4167-2022, https://doi.org/10.5194/acp-22-4167-2022, 2022
Short summary
Short summary
In this study, we quantity the long-term variabilities and the underlying drivers of NO2 from 2005 to 2020 over the Yangtze River Delta (YRD), one of the most densely populated and highly industrialized city clusters in China. We reveal the significant effect of the Action Plan on the Prevention and Control of Air Pollution since 2013 adopted by the Chinese government to reduce NOx pollution. Our study can improve the understanding of pollution control measures on a regional scale.
Chloé Radice, Hélène Brogniez, Pierre-Emmanuel Kirstetter, and Philippe Chambon
Atmos. Chem. Phys., 22, 3811–3825, https://doi.org/10.5194/acp-22-3811-2022, https://doi.org/10.5194/acp-22-3811-2022, 2022
Short summary
Short summary
A novel probabilistic approach is proposed to evaluate relative humidity (RH) profiles simulated by an atmospheric model with respect to satellite-based RH defined from probability distributions. It improves upon deterministic comparisons by enhancing the information content to enable a finer assessment of each model–observation discrepancy, highlighting significant departures within a deterministic confidence range. Geographical and vertical distributions of the model biases are discussed.
Manu Anna Thomas, Abhay Devasthale, and Tiina Nygård
Atmos. Chem. Phys., 21, 16593–16608, https://doi.org/10.5194/acp-21-16593-2021, https://doi.org/10.5194/acp-21-16593-2021, 2021
Short summary
Short summary
The impact of transported pollutants and their spatial distribution in the Arctic are governed by the local atmospheric circulation or weather states. Therefore, we investigated eight different atmospheric circulation types observed during the spring season in the Arctic. Using satellite and reanalysis datasets, this study provides a comprehensive assessment of the typical circulation patterns that can lead to enhanced or reduced pollution concentrations in the different sectors of the Arctic.
Xin Tian, Yang Wang, Steffen Beirle, Pinhua Xie, Thomas Wagner, Jin Xu, Ang Li, Steffen Dörner, Bo Ren, and Xiaomei Li
Atmos. Chem. Phys., 21, 12867–12894, https://doi.org/10.5194/acp-21-12867-2021, https://doi.org/10.5194/acp-21-12867-2021, 2021
Short summary
Short summary
The performances of two MAX-DOAS inversion algorithms were evaluated for various aerosol pollution scenarios. One inversion algorithm is based on optimal estimation; the other uses a parameterized approach. In this analysis, three types of profile shapes for aerosols and NO2 were considered: exponential, Boltzmann, and Gaussian. The evaluation results can effectively guide the application of the two inversion algorithms in the actual atmosphere and improve the accuracy of the actual inversion.
Rebecca D. Kutzner, Juan Cuesta, Pascale Chelin, Jean-Eudes Petit, Mokhtar Ray, Xavier Landsheere, Benoît Tournadre, Jean-Charles Dupont, Amandine Rosso, Frank Hase, Johannes Orphal, and Matthias Beekmann
Atmos. Chem. Phys., 21, 12091–12111, https://doi.org/10.5194/acp-21-12091-2021, https://doi.org/10.5194/acp-21-12091-2021, 2021
Short summary
Short summary
Our work investigates the diurnal evolution of atmospheric ammonia concentrations during a major pollution event. It analyses it in regard of both chemical (gas–particle conversion) and physical (vertical mixing, meteorology) processes in the atmosphere. These mechanisms are key for understanding the evolution of the physicochemical state of the atmosphere; therefore, it clearly fits into the scope of Atmospheric Chemistry and Physics.
Youwen Sun, Hao Yin, Cheng Liu, Emmanuel Mahieu, Justus Notholt, Yao Té, Xiao Lu, Mathias Palm, Wei Wang, Changgong Shan, Qihou Hu, Min Qin, Yuan Tian, and Bo Zheng
Atmos. Chem. Phys., 21, 11759–11779, https://doi.org/10.5194/acp-21-11759-2021, https://doi.org/10.5194/acp-21-11759-2021, 2021
Short summary
Short summary
The variability, sources, and transport of ethane (C2H6) over eastern China from 2015 to 2020 were studied using ground-based Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem simulations. C2H6 variability is driven by both meteorological and emission factors. The reduction in C2H6 in recent years over eastern China points to air quality improvement in China.
Youwen Sun, Hao Yin, Cheng Liu, Lin Zhang, Yuan Cheng, Mathias Palm, Justus Notholt, Xiao Lu, Corinne Vigouroux, Bo Zheng, Wei Wang, Nicholas Jones, Changong Shan, Min Qin, Yuan Tian, Qihou Hu, Fanhao Meng, and Jianguo Liu
Atmos. Chem. Phys., 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021, https://doi.org/10.5194/acp-21-6365-2021, 2021
Short summary
Short summary
This study mapped the drivers of HCHO variability from 2015 to 2019 over eastern China. Hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO abundance were analyzed. Contributions of various emission sources and geographical regions to the observed HCHO summertime enhancements were determined.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Maria-Elissavet Koukouli, Ioanna Skoulidou, Andreas Karavias, Isaak Parcharidis, Dimitris Balis, Astrid Manders, Arjo Segers, Henk Eskes, and Jos van Geffen
Atmos. Chem. Phys., 21, 1759–1774, https://doi.org/10.5194/acp-21-1759-2021, https://doi.org/10.5194/acp-21-1759-2021, 2021
Short summary
Short summary
In recent years, satellite observations have contributed to monitoring air quality. During the first COVID-19 lockdown, lower levels of nitrogen dioxide were observed over Greece by S5P/TROPOMI for March and April 2020 (than the preceding year) due to decreased transport emissions. Taking meteorology into account, using LOTOS-EUROS CTM simulations, the resulting decline due to the lockdown was estimated to range between 0 % and −37 % for the five largest Greek cities, with an average of ~ −10 %.
Tobias Borsdorff, Agustín García Reynoso, Gilberto Maldonado, Bertha Mar-Morales, Wolfgang Stremme, Michel Grutter, and Jochen Landgraf
Atmos. Chem. Phys., 20, 15761–15774, https://doi.org/10.5194/acp-20-15761-2020, https://doi.org/10.5194/acp-20-15761-2020, 2020
Sora Seo, Andreas Richter, Anne-Marlene Blechschmidt, Ilias Bougoudis, and John Philip Burrows
Atmos. Chem. Phys., 20, 12285–12312, https://doi.org/10.5194/acp-20-12285-2020, https://doi.org/10.5194/acp-20-12285-2020, 2020
Short summary
Short summary
In this study, we present spatial distributions of occurrence frequency of enhanced total BrO column and various meteorological parameters affecting it in the Arctic and Antarctic sea ice regions by using 10 years of GOME-2 measurements and meteorological model data. Statistical analysis using the long-term dataset shows clear differences in the meteorological conditions between the mean field and the situation of enhanced total BrO columns in both polar sea ice regions.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020, https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
Short summary
We have calculated an 11.5-year water vapour climatology using the Raman Lidar for Meteorological Observations (RALMO), located in Payerne, Switzerland. The climatology shows that the highest water vapour concentrations are in the summer months and the lowest in the winter months. We present for the first time height-resolved water vapour trends, which show that water vapour increases specific humidity by between 5 % and 15 % per decade depending on the altitude.
Yohanna Villalobos, Peter Rayner, Steven Thomas, and Jeremy Silver
Atmos. Chem. Phys., 20, 8473–8500, https://doi.org/10.5194/acp-20-8473-2020, https://doi.org/10.5194/acp-20-8473-2020, 2020
Short summary
Short summary
Estimated carbon fluxes for Australia are subject to considerable uncertainty. We ran simulation experiments over Australia to determine how much these uncertainties can be constrained using satellite data. We found that the satellite data has the potential to reduce these uncertainties up to 80 % across the whole continent. For 1 month, this percentage corresponds to 0.51 Pg C y-1 for Australia. This method could lead to significantly more accurate estimates of Australia's carbon budget.
Bo Zheng, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Yilong Wang, Jinghui Lian, and Yuanhong Zhao
Atmos. Chem. Phys., 20, 8501–8510, https://doi.org/10.5194/acp-20-8501-2020, https://doi.org/10.5194/acp-20-8501-2020, 2020
Short summary
Short summary
The Paris Climate Agreement requires all parties to report CO2 emissions regularly. Given the self-reporting nature of this system, it is critical to evaluate the emission reports with independent observation systems. Here we present the direct observations of city CO2 plumes from space and the quantification of CO2 emissions from these observations over the largest emitter country China. The emissions from 46 hot-spot regions representing 13 % of China's total emissions can be well constrained.
Jeffery Langille, Adam Bourassa, Laura L. Pan, Daniel Letros, Brian Solheim, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 20, 5477–5486, https://doi.org/10.5194/acp-20-5477-2020, https://doi.org/10.5194/acp-20-5477-2020, 2020
Short summary
Short summary
Water vapour (WV) is a highly variable and extremely important trace gas in Earth’s atmosphere. Due to its radiative and chemical properties, it is coupled to the climate in an extremely complex manner. This is especially true in the lowermost stratosphere (LMS). Despite its importance, the physical processes that control mixing and the distribution of WV in the LMS are poorly understood. This study provides observational evidence of moistening the LMS via mixing across the subtropical jet.
Youwen Sun, Cheng Liu, Lin Zhang, Mathias Palm, Justus Notholt, Hao Yin, Corinne Vigouroux, Erik Lutsch, Wei Wang, Changong Shan, Thomas Blumenstock, Tomoo Nagahama, Isamu Morino, Emmanuel Mahieu, Kimberly Strong, Bavo Langerock, Martine De Mazière, Qihou Hu, Huifang Zhang, Christof Petri, and Jianguo Liu
Atmos. Chem. Phys., 20, 5437–5456, https://doi.org/10.5194/acp-20-5437-2020, https://doi.org/10.5194/acp-20-5437-2020, 2020
Short summary
Short summary
We present multiyear time series of ground-based Fourier-transform infrared spectroscopy measurements of HCN in densely populated eastern China. The seasonality and interannual variability of tropospheric HCN columns were investigated. The potential sources that drive the observed HCN seasonality and interannual variability were determined using a GEOS-Chem tagged CO simulation, global fire maps, and potential source contribution function values calculated using HYSPLIT back trajectories.
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Short summary
Ammonia is an essential molecule in the environment, but at its current levels it is unsustainable. However, the emissions are highly uncertain. We explore the use of satellites to estimate the ammonia lifetime and emissions around point sources to help improve the budget. The same method applied to different satellite instruments shows consistent results. Comparison to the emission inventories shows that those are underestimating emissions of point sources by on average a factor of 2.5.
Klemens Hocke, Leonie Bernet, Jonas Hagen, Axel Murk, Matthias Renker, and Christian Mätzler
Atmos. Chem. Phys., 19, 12083–12090, https://doi.org/10.5194/acp-19-12083-2019, https://doi.org/10.5194/acp-19-12083-2019, 2019
Short summary
Short summary
The Tropospheric Water Radiometer (TROWARA) observed an enhanced intensity of short-term integrated water vapour (IWV) fluctuations during daytime in summer. These IWV fluctuations are possibly related to latent heat flux and thermal convective activity in the lower troposphere. The observed climatology and spectra of IWV fluctuations might be useful for modelling studies of water vapour convection in the atmospheric boundary layer at mid latitudes.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Ka Lok Chan, Zhuoru Wang, Aijun Ding, Klaus-Peter Heue, Yicheng Shen, Jing Wang, Feng Zhang, Yining Shi, Nan Hao, and Mark Wenig
Atmos. Chem. Phys., 19, 10051–10071, https://doi.org/10.5194/acp-19-10051-2019, https://doi.org/10.5194/acp-19-10051-2019, 2019
Short summary
Short summary
The paper presents long-term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a MAX-DOAS instrument. The measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO are used to validate OMI satellite observations and to investigate the influences of region transport of air pollutants on the air quality in Nanjing.
Olivier Bock and Ana C. Parracho
Atmos. Chem. Phys., 19, 9453–9468, https://doi.org/10.5194/acp-19-9453-2019, https://doi.org/10.5194/acp-19-9453-2019, 2019
Short summary
Short summary
We examine the consistency of global IWV data from ERA-Interim reanalysis and 16 years of GPS observations. Representativeness differences are found to be a dominant error source, with a strong dependence on geographic, topographic, and climatic features, which explain both average and extreme differences. A methodology for reducing the representativeness errors and detecting the extreme, outlying, cases is discussed.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Sven Krautwurst, Christopher W. O'Dell, Andreas Richter, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 19, 9371–9383, https://doi.org/10.5194/acp-19-9371-2019, https://doi.org/10.5194/acp-19-9371-2019, 2019
Short summary
Short summary
The quantification of anthropogenic emissions with current CO2 satellite sensors is difficult, but NO2 is co-emitted, making it a suitable tracer of recently emitted CO2. We analyze enhancements of CO2 and NO2 observed by OCO-2 and S5P and estimate the CO2 plume cross-sectional fluxes that we compare with emission databases. Our results demonstrate the usefulness of simultaneous satellite observations of CO2 and NO2 as envisaged for the European Copernicus anthropogenic CO2 monitoring mission
Luis F. Millán, Matthew D. Lebsock, and Joao Teixeira
Atmos. Chem. Phys., 19, 8491–8502, https://doi.org/10.5194/acp-19-8491-2019, https://doi.org/10.5194/acp-19-8491-2019, 2019
Short summary
Short summary
The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of marine boundary layer water vapor. AMSR provides the total column water vapor, while MODIS provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor.
Aristeidis K. Georgoulias, Ronald J. van der A, Piet Stammes, K. Folkert Boersma, and Henk J. Eskes
Atmos. Chem. Phys., 19, 6269–6294, https://doi.org/10.5194/acp-19-6269-2019, https://doi.org/10.5194/acp-19-6269-2019, 2019
Short summary
Short summary
In this paper, a ∼21-year self-consistent global dataset from four different satellite sensors is compiled for the first time to study the long-term tropospheric NO2 patterns and trends. A novel method capable of detecting the year when a reversal of trends happened shows that tropospheric NO2 concentrations switched from positive to negative trends and vice versa over several regions around the globe during the last 2 decades.
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019, https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
Short summary
The 2014–2015 Holuhraun eruption was the largest in Iceland for 200 years, emitting huge quantities of gas into the troposphere, at times overwhelming European anthropogenic emissions. Infrared Atmospheric sounding Interferometer data are used to derive the first time series of daily sulfur dioxide mass and vertical distribution over the eruption period. A scheme is used to estimate sulfur dioxide fluxes, the total erupted mass, and how long the sulfur dioxide remains in the atmosphere.
Cited articles
Bian, J., Pan, L. L., Paulik, L., Vömel, H., Chen, H., and Lu, D.: In situ
water vapor and ozone measurements in Lhasa and Kunming during the Asian
summer monsoon, Geophys. Res. Lett., 39, L19808, https://doi.org/10.1029/2012GL052996,
2012. a
Bourtsoukidis, E., Helleis, F., Tomsche, L., Fischer, H., Hofmann, R., Lelieveld, J., and Williams, J.: An aircraft gas chromatograph–mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow, Atmos. Meas. Tech., 10, 5089–5105, https://doi.org/10.5194/amt-10-5089-2017, 2017. a
Bozem, H., Butler, T. M., Lawrence, M. G., Harder, H., Martinez, M., Kubistin, D., Lelieveld, J., and Fischer, H.: Chemical processes related to net ozone tendencies in the free troposphere, Atmos. Chem. Phys., 17, 10565–10582, https://doi.org/10.5194/acp-17-10565-2017, 2017. a, b
Braun, M., Grooß, J.-U., Woiwode, W., Johansson, S., Höpfner, M., Friedl-Vallon, F., Oelhaf, H., Preusse, P., Ungermann, J., Sinnhuber, B.-M., Ziereis, H., and Braesicke, P.: Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016, Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, 2019. a
Browell, E. V., Danielsen, E. F., Ismail, S., Gregory, G. L., and Beck, S. M.:
Tropopause fold structure determined from airborne lidar and in situ
measurements, J. Geophys. Res., 92, 2112,
https://doi.org/10.1029/JD092iD02p02112, 1987. a, b
Brunamonti, S., Jorge, T., Oelsner, P., Hanumanthu, S., Singh, B. B., Kumar, K. R., Sonbawne, S., Meier, S., Singh, D., Wienhold, F. G., Luo, B. P., Boettcher, M., Poltera, Y., Jauhiainen, H., Kayastha, R., Karmacharya, J., Dirksen, R., Naja, M., Rex, M., Fadnavis, S., and Peter, T.: Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017, Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, 2018. a, b, c
Bucci, S., Legras, B., Sellitto, P., D'Amato, F., Viciani, S., Montori, A., Chiarugi, A., Ravegnani, F., Ulanovsky, A., Cairo, F., and Stroh, F.: Deep-convective influence on the upper troposphere–lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results, Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, 2020. a, b, c, d
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb,
C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation No. 18, JPL Publication, 15-10, available at:
http://jpldataeval.jpl.nasa.gov (last access: 30 November 2020), 2015. a
Coheur, P.-F., Herbin, H., Clerbaux, C., Hurtmans, D., Wespes, C., Carleer, M., Turquety, S., Rinsland, C. P., Remedios, J., Hauglustaine, D., Boone, C. D., and Bernath, P. F.: ACE-FTS observation of a young biomass burning plume: first reported measurements of C2H4, C3H6O, H2CO and PAN by infrared occultation from space, Atmos. Chem. Phys., 7, 5437–5446, https://doi.org/10.5194/acp-7-5437-2007, 2007. a
Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI measurements of reactive trace species in biomass burning plumes, Atmos. Chem. Phys., 9, 5655–5667, https://doi.org/10.5194/acp-9-5655-2009, 2009. a, b
Crutzen, P. J.: The role of NO and NO2 in the chemistry of the troposphere and
stratosphere, Annu. Rev. Earth Planet. Sc., 7, 443–472,
1979. a
Cussac, M., Marécal, V., Thouret, V., Josse, B., and Sauvage, B.: The impact of biomass burning on upper tropospheric carbon monoxide: a study using MOCAGE global model and IAGOS airborne data, Atmos. Chem. Phys., 20, 9393–9417, https://doi.org/10.5194/acp-20-9393-2020, 2020. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J., Park, B.,
Peubey, C., Rosnay, P. D., Tavolato, C., Thépaut, J., and Vitart, F.: The
ERA‐Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828,
2011. a
Derrien, M., Le Gleau, H., and Raoul, M.-P.: The use of the high resolution
visible in SAFNWC/MSG cloud mask, available at:
https://hal-meteofrance.archives-ouvertes.fr/meteo-00604325/document (last access: 30 November 2020),
2010. a
ECMWF: Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis, available at: https://apps.ecmwf.int/data-catalogues/cams-reanalysis/, last access: 30 November 2020. a
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K., Chipperfield,
M., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M., Granier, C.,
Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B., Martin, R.,
Matthes, K., Newman, P., Peter, T., Robock, A., Ryerson, A., Saiz-Lopez, A.,
Salawitch, R., Schultz, M., Shepherd, T., Shindell, D., Stähelin, J.,
Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P., Waugh, D., and
Young, P.: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI)
Community Simulations in Support of Upcoming Ozone and Climate Assessments,
SPARC Newsletter, 40,
available at: http://www.sparc-climate.org/publications/newsletter/ (last access: 30 November 2020), 2013. a
Fadnavis, S., Schultz, M. G., Semeniuk, K., Mahajan, A. S., Pozzoli, L., Sonbawne, S., Ghude, S. D., Kiefer, M., and Eckert, E.: Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts, Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, 2014. a, b, c
Fadnavis, S., Semeniuk, K., Schultz, M. G., Kiefer, M., Mahajan, A., Pozzoli, L., and Sonbawane, S.: Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season, Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, 2015. a, b
Fischer, E. V., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D. B., Mao, J., Paulot, F., Singh, H. B., Roiger, A., Ries, L., Talbot, R. W., Dzepina, K., and Pandey Deolal, S.: Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem. Phys., 14, 2679–2698, https://doi.org/10.5194/acp-14-2679-2014, 2014. a, b
Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel, A., Inness, A., Jones, L., Josse, B., Katragkou, E., Marecal, V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and Tsikerdekis, A.: Tropospheric chemistry in the Integrated Forecasting System of ECMWF, Geosci. Model Dev., 8, 975–1003, https://doi.org/10.5194/gmd-8-975-2015, 2015. a
Friedl-Vallon, F., Gulde, T., Hase, F., Kleinert, A., Kulessa, T., Maucher, G., Neubert, T., Olschewski, F., Piesch, C., Preusse, P., Rongen, H., Sartorius, C., Schneider, H., Schönfeld, A., Tan, V., Bayer, N., Blank, J., Dapp, R., Ebersoldt, A., Fischer, H., Graf, F., Guggenmoser, T., Höpfner, M., Kaufmann, M., Kretschmer, E., Latzko, T., Nordmeyer, H., Oelhaf, H., Orphal, J., Riese, M., Schardt, G., Schillings, J., Sha, M. K., Suminska-Ebersoldt, O., and Ungermann, J.: Instrument concept of the imaging Fourier transform spectrometer GLORIA, Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, 2014. a
Froidevaux, L., Waters, J. W., Read, W. G., Elson, L. S., Flower, D. A., and
Jarnot, R. F.: Global Ozone Observations from the UARS MLS: An Overview of
Zonal-Mean Results, J. Atmos. Sci., 51, 2846–2866,
https://doi.org/10.1175/1520-0469(1994)051<2846:GOOFTM>2.0.CO;2, 1994. a
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas
Mitigation Analysis on Stabilization Scenarios Using Aim Global Model,
Energ. J., SI2006, https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17,
2006. a
Ge, C., Zhu, C., Francisco, J. S., Zeng, X. C., and Wang, J.: A molecular
perspective for global modeling of upper atmospheric NH3 from freezing
clouds, P. Natl. Acad. Sci. USA, 115, 6147–6152,
https://doi.org/10.1073/pnas.1719949115, 2018. a, b
Glatthor, N., von Clarmann, T., Fischer, H., Funke, B., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Milz, M., Steck, T., and Stiller, G. P.: Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Atmos. Chem. Phys., 7, 2775–2787, https://doi.org/10.5194/acp-7-2775-2007, 2007. a, b, c, d
Gottschaldt, K.-D., Schlager, H., Baumann, R., Bozem, H., Eyring, V., Hoor, P., Jöckel, P., Jurkat, T., Voigt, C., Zahn, A., and Ziereis, H.: Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations, Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, 2017. a
Gottschaldt, K.-D., Schlager, H., Baumann, R., Cai, D. S., Eyring, V., Graf, P., Grewe, V., Jöckel, P., Jurkat-Witschas, T., Voigt, C., Zahn, A., and Ziereis, H.: Dynamics and composition of the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, 2018. a, b, c, d
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., van der Denier Gon,
H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster,
S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara,
T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Climatic Change, 109,
163–190, https://doi.org/10.1007/s10584-011-0154-1, 2011. a, b
Grutter, M., Glatthor, N., Stiller, G. P., Fischer, H., Grabowski, U.,
Höpfner, M., Kellmann, S., Linden, A., and von Clarmann, T.: Global
distribution and variability of formic acid as observed by MIPAS‐ENVISAT,
J. Geophys. Res.-Atmos., 115, D10303,
https://doi.org/10.1029/2009JD012980,
2010. a, b
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. a
Hoyle, C. R., Marécal, V., Russo, M. R., Allen, G., Arteta, J., Chemel, C., Chipperfield, M. P., D'Amato, F., Dessens, O., Feng, W., Hamilton, J. F., Harris, N. R. P., Hosking, J. S., Lewis, A. C., Morgenstern, O., Peter, T., Pyle, J. A., Reddmann, T., Richards, N. A. D., Telford, P. J., Tian, W., Viciani, S., Volz-Thomas, A., Wild, O., Yang, X., and Zeng, G.: Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport, Atmos. Chem. Phys., 11, 8103–8131, https://doi.org/10.5194/acp-11-8103-2011, 2011. a
Höpfner, M., Volkamer, R., Grabowski, U., Grutter, M., Orphal, J., Stiller, G., von Clarmann, T., and Wetzel, G.: First detection of ammonia (NH3) in the Asian summer monsoon upper troposphere, Atmos. Chem. Phys., 16, 14357–14369, https://doi.org/10.5194/acp-16-14357-2016, 2016. a
Höpfner, M., Ungermann, J., Borrmann, S., Wagner, R., Spang, R., Riese, M.,
Stiller, G., Appel, O., Batenburg, A. M., Bucci, S., Cairo, F., Dragoneas,
A., Friedl-Vallon, F., Hünig, A., Johansson, S., Krasauskas, L., Legras, B.,
Leisner, T., Mahnke, C., Möhler, O., Molleker, S., Müller, R., Neubert, T.,
Orphal, J., Preusse, P., Rex, M., Saathoff, H., Stroh, F., Weigel, R., and
Wohltmann, I.: Ammonium nitrate particles formed in upper troposphere from
ground ammonia sources during Asian monsoons, Nat. Geosci., 12,
608–612, https://doi.org/10.1038/s41561-019-0385-8, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Inness, A., Blechschmidt, A.-M., Bouarar, I., Chabrillat, S., Crepulja, M., Engelen, R. J., Eskes, H., Flemming, J., Gaudel, A., Hendrick, F., Huijnen, V., Jones, L., Kapsomenakis, J., Katragkou, E., Keppens, A., Langerock, B., de Mazière, M., Melas, D., Parrington, M., Peuch, V. H., Razinger, M., Richter, A., Schultz, M. G., Suttie, M., Thouret, V., Vrekoussis, M., Wagner, A., and Zerefos, C.: Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS, Atmos. Chem. Phys., 15, 5275–5303, https://doi.org/10.5194/acp-15-5275-2015, 2015. a
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019. a
James, R., Bonazzola, M., Legras, B., Surbled, K., and Fueglistaler, S.: Water
vapor transport and dehydration above convective outflow during Asian
monsoon, Geophys. Res. Lett., 35, L20810, https://doi.org/10.1029/2008GL035441,
2008. a
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-717-2010, 2010. a
Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, 2016. a
Johansson, S., Woiwode, W., Höpfner, M., Friedl-Vallon, F., Kleinert, A., Kretschmer, E., Latzko, T., Orphal, J., Preusse, P., Ungermann, J., Santee, M. L., Jurkat-Witschas, T., Marsing, A., Voigt, C., Giez, A., Krämer, M., Rolf, C., Zahn, A., Engel, A., Sinnhuber, B.-M., and Oelhaf, H.: Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS, Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, 2018. a, b
Johansson, S., Höpfner, M., Ungermann, J., Wetzel, G., Glatthor, N., Friedl-Vallon, F., and Kretschmer, E.:
GLORIA data for: Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017, HALO-DB, https://doi.org/10.17616/R39Q0T, available at:
https://halo-db.pa.op.dlr.de/mission/101, last access: 30 November 2020a. a
Johansson, S., Höpfner, M., Ungermann, J., Wetzel, G., Glatthor, N., Friedl-Vallon, F., and Kretschmer, E.:
GLORIA data for: Pollution trace gas distributions and their transport in the Asian monsoon upper troposphere and lowermost stratosphere during the StratoClim campaign 2017, KIT, https://doi.org/10.5445/IR/1000125319, 2020b. a
Jurkat, T., Kaufmann, S., Voigt, C., Schäuble, D., Jeßberger, P., and Ziereis, H.: The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS, Atmos. Meas. Tech., 9, 1907–1923, https://doi.org/10.5194/amt-9-1907-2016, 2016. a
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012. a
Krotkov, N. A., Lamsal, L. N., Marchenko, S. V., Celarier, E. A., Bucsela, E. J., Swartz, W. H., Joiner, J., and the OMI core team: OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column Daily
L3 Global 0.25deg Lat/Lon Grid, https://doi.org/10.5067/AURA/OMI/DATA3007, 2013. a, b
Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., Chan, K. L., Wenig, M., and Zara, M.: The version 3 OMI NO2 standard product, Atmos. Meas. Tech., 10, 3133–3149, https://doi.org/10.5194/amt-10-3133-2017, 2017. a
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013. a
Legras, B. and Bucci, S.: Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season, Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, 2020. a, b, c
Legras, B., Pisso, I., Berthet, G., and Lefèvre, F.: Variability of the Lagrangian turbulent diffusion in the lower stratosphere, Atmos. Chem. Phys., 5, 1605–1622, https://doi.org/10.5194/acp-5-1605-2005, 2005. a
Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H., Harder,
H., Hofzumahaus, A., Holland, F., Marno, D., Neumaier, M., Pozzer, A.,
Schlager, H., Williams, J., Zahn, A., and Ziereis, H.: The South Asian
monsoon-pollution pump and purifier, Science, 361, 270–273,
https://doi.org/10.1126/science.aar2501, 2018. a
Levelt, P. F., van den Oord, G., Dobber, M. R., Malkki, A., Visser, H.,
Vries, J. d., Stammes, P., Lundell, J., and Saari, H.: The ozone monitoring
instrument, IEEE T. Geosci. Remote Sens., 44,
1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006. a
Li, D., Vogel, B., Müller, R., Bian, J., Günther, G., Li, Q., Zhang, J., Bai, Z., Vömel, H., and Riese, M.: High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions, Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, 2018. a
Livesey, N. J., Filipiak, M. J., Froidevaux, L., Read, W. G., Lambert, A.,
Santee, M. L., Jiang, J. H., Pumphrey, H. C., Waters, J. W., Cofield, R. E.,
Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F.,
Jiang, Y. B., Knosp, B. W., Li, Q. B., Perun, V. S., Schwartz, M. J., Snyder,
W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Avery, M., Browell,
E. V., Cammas, J., Christensen, L. E., Diskin, G. S., Gao, R., Jost, H.,
Loewenstein, M., Lopez, J. D., Nedelec, P., Osterman, G. B., Sachse, G. W.,
and Webster, C. R.: Validation of Aura Microwave Limb Sounder O3 and CO
observations in the upper troposphere and lower stratosphere, J. Geophys. Res.-Atmos., 113, D15S02, https://doi.org/10.1029/2007JD008805,
2008. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011. a
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015. a
Monks, S. A., Wilson, C., Emmons, L. K., Hannigan, J. W., Helmig, D., Blake,
N. J., and Blake, D. R.: Using an Inverse Model to Reconcile Differences in
Simulated and Observed Global Ethane Concentrations and Trends Between 2008
and 2014, J. Geophys. Res.-Atmos., 123, 11262–11282,
https://doi.org/10.1029/2017JD028112,
2018. a
Morcrette, J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A.,
Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., Schulz, M., Serrar,
S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.:
Aerosol analysis and forecast in the European Centre for Medium‐Range
Weather Forecasts Integrated Forecast System: Forward modeling, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235,
2009. a
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Wentworth, G. R., Murphy, J. G., Kunkel, D., Gute, E., Tarasick, D. W., Sharma, S., Cox, C. J., Uttal, T., and Liggio, J.: High gas-phase mixing ratios of formic and acetic acid in the High Arctic, Atmos. Chem. Phys., 18, 10237–10254, https://doi.org/10.5194/acp-18-10237-2018, 2018. a
Neuman, J. A., Gao, R. S., Fahey, D. W., Holecek, J. C., Ridley, B. A., Walega,
J. G., Grahek, F. E., Richard, E. C., McElroy, C. T., Thompson, T. L.,
Elkins, J. W., Moore, F. L., and Ray, E. A.: In situ measurements of HNO3,
NOy, NO, and O3 in the lower stratosphere and upper troposphere, Atmos.
Environ., 35, 5789–5797, https://doi.org/10.1016/S1352-2310(01)00354-5, 2001. a
Nordeng, T. E.: Extended versions of the convective parametrization scheme at
ECMWF and their impact on the mean and transient activity of the model in the
tropics, Tech. Rep. ECMWF no. 206, ECMWF, Reading, UK, 1994. a
Pan, L. L., Honomichl, S. B., Kinnison, D. E., Abalos, M., Randel, W. J.,
Bergman, J. W., and Bian, J.: Transport of chemical tracers from the boundary
layer to stratosphere associated with the dynamics of the Asian summer
monsoon, J. Geophys. Res.-Atmos., 121, 14159–14174,
https://doi.org/10.1002/2016JD025616,
2016. a, b
Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H.:
Transport above the Asian summer monsoon anticyclone inferred from Aura
Microwave Limb Sounder tracers, J. Geophys. Res., 112, 253,
https://doi.org/10.1029/2006JD008294, 2007. a
Park, M., Randel, W. J., Emmons, L. K., Bernath, P. F., Walker, K. A., and Boone, C. D.: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos. Chem. Phys., 8, 757–764, https://doi.org/10.5194/acp-8-757-2008, 2008. a, b, c
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011. a
Pisso, I. and Legras, B.: Turbulent vertical diffusivity in the sub-tropical stratosphere, Atmos. Chem. Phys., 8, 697–707, https://doi.org/10.5194/acp-8-697-2008, 2008. a, b
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical tropopause
layer and their roles in a changing climate, Nat. Geosci., 6, 169–176,
https://doi.org/10.1038/ngeo1733, 2013. a, b
Reiner, T., Möhler, O., and Arnold, F.: Measurements of acetone, acetic acid,
and formic acid in the northern midlatitude upper troposphere and lower
stratosphere, J. Geophys. Res.-Atmos., 104,
13943–13952, https://doi.org/10.1029/1999JD900030,
1999. a
Riese, M., Oelhaf, H., Preusse, P., Blank, J., Ern, M., Friedl-Vallon, F., Fischer, H., Guggenmoser, T., Höpfner, M., Hoor, P., Kaufmann, M., Orphal, J., Plöger, F., Spang, R., Suminska-Ebersoldt, O., Ungermann, J., Vogel, B., and Woiwode, W.: Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives, Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, 2014. a
Rinsland, C. P., Zander, R., Farmer, C. B., Norton, R. H., and Russell, J. M.:
Concentrations of ethane (C2H6) in the lower stratosphere and upper
troposphere and acetylene (C2H2) in the upper troposphere deduced from
atmospheric trace molecule spectroscopy/Spacelab 3 spectra, J. Geophys. Res.-Atmos., 92, 11951–11964,
https://doi.org/10.1029/JD092iD10p11951,
1987. a
Rinsland, C. P., Dufour, G., Boone, C. D., Bernath, P. F., and Chiou, L.:
Atmospheric Chemistry Experiment (ACE) measurements of elevated Southern
Hemisphere upper tropospheric CO, C2H6, HCN, and C2H2 mixing ratios from
biomass burning emissions and long‐range transport, Geophys. Res. Lett., 32, L20803, https://doi.org/10.1029/2005GL024214,
2005. a
Rinsland, C. P., Boone, C. D., Bernath, P. F., Mahieu, E., Zander, R., Dufour,
G., Clerbaux, C., Turquety, S., Chiou, L., McConnell, J. C., Neary, L., and
Kaminski, J. W.: First space‐based observations of formic acid (HCOOH):
Atmospheric Chemistry Experiment austral spring 2004 and 2005 Southern
Hemisphere tropical‐mid‐latitude upper tropospheric measurements,
Geophys. Res. Lett., 33, L23804, https://doi.org/10.1029/2006GL027128,
2006. a
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of Simulated
Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model,
J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006. a
Safieddine, S., Boynard, A., Hao, N., Huang, F., Wang, L., Ji, D., Barret, B., Ghude, S. D., Coheur, P.-F., Hurtmans, D., and Clerbaux, C.: Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations, Atmos. Chem. Phys., 16, 10489–10500, https://doi.org/10.5194/acp-16-10489-2016, 2016. a, b
Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380, https://doi.org/10.5194/gmd-4-373-2011, 2011. a
Santee, M. L., Lambert, A., Read, W. G., Livesey, N. J., Cofield, R. E., Cuddy,
D. T., Daffer, W. H., Drouin, B. J., Froidevaux, L., Fuller, R. A., Jarnot,
R. F., Knosp, B. W., Manney, G. L., Perun, V. S., Snyder, W. V., Stek, P. C.,
Thurstans, R. P., Wagner, P. A., Waters, J. W., Muscari, G., de Zafra, R. L.,
Dibb, J. E., Fahey, D. W., Popp, P. J., Marcy, T. P., Jucks, K. W., Toon,
G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K. A., Urban,
J., and Murtagh, D.: Validation of the Aura Microwave Limb Sounder HNO3
measurements, J. Geophys. Res.-Atmos., 112,
2007JD008721, https://doi.org/10.1029/2007JD008721,
2007. a
Santee, M. L., Manney, G. L., Livesey, N. J., Froidevaux, L., Schwartz, M. J.,
and Read, W. G.: Trace gas evolution in the lowermost stratosphere from Aura
Microwave Limb Sounder measurements, J. Geophys. Res.-Atmos., 116, D18306, https://doi.org/10.1029/2011JD015590,
2011. a
Santee, M. L., Manney, G. L., Livesey, N. J., Schwartz, M. J., Neu, J. L., and
Read, W. G.: A comprehensive overview of the climatological composition of
the Asian summer monsoon anticyclone based on 10 years of Aura Microwave Limb
Sounder measurements, J. Geophys. Res.-Atmos., 122,
5491–5514, https://doi.org/10.1002/2016JD026408,
2017. a, b, c
Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, https://doi.org/10.5194/acp-7-3823-2007, 2007. a, b
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, John Wiley & Sons, Incorporated, New York,
USA, 2016. a
Sèze, G., Pelon, J., Derrien, M., Le Gléau, H., and Six, B.: Evaluation
against CALIPSO lidar observations of the multi‐geostationary cloud cover
and type dataset assembled in the framework of the Megha‐Tropiques mission,
Q. J. Roy. Meteor. Soc., 141, 774–797,
https://doi.org/10.1002/qj.2392,
2015. a
Sheese, P. E., Walker, K. A., Boone, C. D., McLinden, C. A., Bernath, P. F., Bourassa, A. E., Burrows, J. P., Degenstein, D. A., Funke, B., Fussen, D., Manney, G. L., McElroy, C. T., Murtagh, D., Randall, C. E., Raspollini, P., Rozanov, A., Russell III, J. M., Suzuki, M., Shiotani, M., Urban, J., von Clarmann, T., and Zawodny, J. M.: Validation of ACE-FTS version 3.5 NOy species profiles using correlative satellite measurements, Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, 2016. a
Singh, H., Chen, Y., Tabazadeh, A., Fukui, Y., Bey, I., Yantosca, R., Jacob,
D., Arnold, F., Wohlfrom, K., Atlas, E., Flocke, F., Blake, D., Blake, N.,
Heikes, B., Snow, J., Talbot, R., Gregory, G., Sachse, G., Vay, S., and
Kondo, Y.: Distribution and fate of selected oxygenated organic species in
the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res.-Atmos., 105, 3795–3805,
https://doi.org/10.1029/1999JD900779,
2000. a
Singh, H., Chen, Y., Staudt, A., Jacob, D., Blake, D., Heikes, B., and Snow,
J.: Evidence from the Pacific troposphere for large global sources of
oxygenated organic compounds, Nature, 410, 1078, https://doi.org/10.1038/35074067,
2001. a
Spang, R., Remedios, J. J., and Brarkley, M. P.: Colour indices for the
detection and differentiation of cloud types in infra-red limb emission
spectra, Adv. Space Res., 33, 1041–1047,
https://doi.org/10.1016/S0273-1177(03)00585-4,
2004. a
Stiller, G. P. (Ed.): The Karlsruhe Optimized and Precise Radiative transfer
Algorithm (KOPRA), Vol. FZKA 6487 of Wissenschaftliche Berichte,
Forschungszentrum Karlsruhe, 2000. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2,
1989. a
Tissier, A.-S. and Legras, B.: Convective sources of trajectories traversing the tropical tropopause layer, Atmos. Chem. Phys., 16, 3383–3398, https://doi.org/10.5194/acp-16-3383-2016, 2016. a
Tost, H., Jöckel, P., and Lelieveld, J.: Influence of different convection parameterisations in a GCM, Atmos. Chem. Phys., 6, 5475–5493, https://doi.org/10.5194/acp-6-5475-2006, 2006. a, b
Ungermann, J., Pan, L. L., Kalicinsky, C., Olschewski, F., Knieling, P., Blank, J., Weigel, K., Guggenmoser, T., Stroh, F., Hoffmann, L., and Riese, M.: Filamentary structure in chemical tracer distributions near the subtropical jet following a wave breaking event, Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, 2013. a
Ungermann, J., Ern, M., Kaufmann, M., Müller, R., Spang, R., Ploeger, F., Vogel, B., and Riese, M.: Observations of PAN and its confinement in the Asian summer monsoon anticyclone in high spatial resolution, Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, 2016. a, b, c, d
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., and Riese, M.: Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere, Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, 2015. a, b
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Afchine, A., Bozem, H., Hoor, P., Krämer, M., Müller, S., Riese, M., Rolf, C., Spelten, N., Stiller, G. P., Ungermann, J., and Zahn, A.: Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012, Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, 2016. a
Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li, D., Riese, M., and Stiller, G. P.: Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe, Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, 2019. a
von Clarmann, T., Höpfner, M., Kellmann, S., Linden, A., Chauhan, S., Funke, B., Grabowski, U., Glatthor, N., Kiefer, M., Schieferdecker, T., Stiller, G. P., and Versick, S.: Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements, Atmos. Meas. Tech., 2, 159–175, https://doi.org/10.5194/amt-2-159-2009, 2009. a, b
Wang, Y., Ma, Y.-F., Eskes, H., Inness, A., Flemming, J., and Brasseur, G. P.: Evaluation of the CAMS global atmospheric trace gas reanalysis 2003–2016 using aircraft campaign observations, Atmos. Chem. Phys., 20, 4493–4521, https://doi.org/10.5194/acp-20-4493-2020, 2020. a
Wiegele, A., Glatthor, N., Höpfner, M., Grabowski, U., Kellmann, S., Linden, A., Stiller, G., and von Clarmann, T.: Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements, Atmos. Meas. Tech., 5, 723–734, https://doi.org/10.5194/amt-5-723-2012, 2012. a, b, c
Wohltmann, I. and Rex, M.: The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing, Geosci. Model Dev., 2, 153–173, https://doi.org/10.5194/gmd-2-153-2009, 2009. a, b
Wohltmann, I., Lehmann, R., Gottwald, G. A., Peters, K., Protat, A., Louf, V., Williams, C., Feng, W., and Rex, M.: A Lagrangian convective transport scheme including a simulation of the time air parcels spend in updrafts (LaConTra v1.0), Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, 2019. a
Woiwode, W., Oelhaf, H., Gulde, T., Piesch, C., Maucher, G., Ebersoldt, A., Keim, C., Höpfner, M., Khaykin, S., Ravegnani, F., Ulanovsky, A. E., Volk, C. M., Hösen, E., Dörnbrack, A., Ungermann, J., Kalicinsky, C., and Orphal, J.: MIPAS-STR measurements in the Arctic UTLS in winter/spring 2010: instrument characterization, retrieval and validation, Atmos. Meas. Tech., 5, 1205–1228, https://doi.org/10.5194/amt-5-1205-2012, 2012. a
Wolff, M. A., Kerzenmacher, T., Strong, K., Walker, K. A., Toohey, M., Dupuy, E., Bernath, P. F., Boone, C. D., Brohede, S., Catoire, V., von Clarmann, T., Coffey, M., Daffer, W. H., De Mazière, M., Duchatelet, P., Glatthor, N., Griffith, D. W. T., Hannigan, J., Hase, F., Höpfner, M., Huret, N., Jones, N., Jucks, K., Kagawa, A., Kasai, Y., Kramer, I., Küllmann, H., Kuttippurath, J., Mahieu, E., Manney, G., McElroy, C. T., McLinden, C., Mébarki, Y., Mikuteit, S., Murtagh, D., Piccolo, C., Raspollini, P., Ridolfi, M., Ruhnke, R., Santee, M., Senten, C., Smale, D., Tétard, C., Urban, J., and Wood, S.: Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), Atmos. Chem. Phys., 8, 3529–3562, https://doi.org/10.5194/acp-8-3529-2008, 2008. a
Xiao, Y., Jacob, D. J., and Turquety, S.: Atmospheric acetylene and its
relationship with CO as an indicator of air mass age, J. Geophys.
Res.-Atmos., 112, D12305, https://doi.org/10.1029/2006JD008268,
2007. a, b
Zahn, A., Weppner, J., Widmann, H., Schlote-Holubek, K., Burger, B., Kühner, T., and Franke, H.: A fast and precise chemiluminescence ozone detector for eddy flux and airborne application, Atmos. Meas. Tech., 5, 363–375, https://doi.org/10.5194/amt-5-363-2012, 2012. a
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the...
Altmetrics
Final-revised paper
Preprint