Articles | Volume 19, issue 22
Atmos. Chem. Phys., 19, 14403–14415, 2019
https://doi.org/10.5194/acp-19-14403-2019

Special issue: Multiphase chemistry of secondary aerosol formation under...

Atmos. Chem. Phys., 19, 14403–14415, 2019
https://doi.org/10.5194/acp-19-14403-2019
Research article
28 Nov 2019
Research article | 28 Nov 2019

Impact of anthropogenic emissions on biogenic secondary organic aerosol: observation in the Pearl River Delta, southern China

Yu-Qing Zhang et al.

Related authors

Interactions of organosulfates with water vapor under sub- and supersaturated conditions
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021,https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of biomass burning and photochemical processing on the light absorption of brown carbon in the southeastern Tibetan Plateau
Jie Tian, Qiyuan Wang, Yongyong Ma, Jin Wang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 23, 1879–1892, https://doi.org/10.5194/acp-23-1879-2023,https://doi.org/10.5194/acp-23-1879-2023, 2023
Short summary
Fates of secondary organic aerosols in the atmosphere identified from compound-specific dual-carbon isotope analysis of oxalic acid
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023,https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Measurement report: Aerosol vertical profiles over the western North Atlantic Ocean during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys., 23, 1465–1490, https://doi.org/10.5194/acp-23-1465-2023,https://doi.org/10.5194/acp-23-1465-2023, 2023
Short summary
Characteristics of fine particle matter at the top of Shanghai Tower
Changqin Yin, Jianming Xu, Wei Gao, Liang Pan, Yixuan Gu, Qingyan Fu, and Fan Yang
Atmos. Chem. Phys., 23, 1329–1343, https://doi.org/10.5194/acp-23-1329-2023,https://doi.org/10.5194/acp-23-1329-2023, 2023
Short summary
Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong – insights into factors that control aerosol metal dissolution in an urban site in South China
Junwei Yang, Lan Ma, Xiao He, Wing Chi Au, Yanhao Miao, Wen-Xiong Wang, and Theodora Nah
Atmos. Chem. Phys., 23, 1403–1419, https://doi.org/10.5194/acp-23-1403-2023,https://doi.org/10.5194/acp-23-1403-2023, 2023
Short summary

Cited articles

Aljawhary, D., Zhao, R., Lee, A. K. Y., Wang, C., and Abbatt, J. P. D.: Kinetics, mechanism, and secondary organic aerosol yield of aqueous phase photo-oxidation of α-pinene oxidation products, J. Phys. Chem. A., 120, 1395–1407, https://doi.org/10.1021/acs.jpca.5b06237, 2016. 
Carlton, A. G., Pinder, R. W., Bhave, P. V., and Pouliot, G. A.: To what extent can biogenic SOA be controlled?, Environ. Sci. Technol., 44, 3376–3380, https://doi.org/10.1021/es903506b, 2010. 
Carlton, A. G., Pye, H. O. T., Baker, K. R., and Hennigan, C. J.: Additional benefits of federal air-quality rules: Model estimates of controllable biogenic secondary organic aerosol, Environ. Sci. Technol., 52, 9254–9265, https://doi.org/10.1021/acs.est.8b01869, 2018. 
Chan, A. W. H., Chan, M. N., Surratt, J. D., Chhabra, P. S., Loza, C. L., Crounse, J. D., Yee, L. D., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation, Atmos. Chem. Phys., 10, 7169–7188, https://doi.org/10.5194/acp-10-7169-2010, 2010. 
Christoffersen, T. S., Hjorth, J., Horie, O., Jensen, N. R., Kotzias, D., Molander, L. L., Neeb, P., Ruppert, L., Winterhalter, R., Virkkula, A., Wirtz, K., and Larsen, B. R.: Cis-pinic acid, a possible precursor for organic aerosol formation from ozonolysis of α-pinene, Atmos. Environ., 32, 1657–1661, https://doi.org/10.1016/S1352-2310(97)00448-2, 1998. 
Download
Short summary
BSOA formation is affected by human activities, which are not well understood in polluted areas. In the polluted PRD region, we find that monoterpene SOA is aged, which probably results from high Ox and sulfate levels. NOx levels significantly affect isoprene SOA formation pathways. An unexpected increase of β-caryophyllene SOA in winter is also highly associated with enhanced biomass burning, Ox, and sulfate. Our results indicate that BSOA could be reduced by lowering anthropogenic emissions.
Altmetrics
Final-revised paper
Preprint