Articles | Volume 16, issue 15
Atmos. Chem. Phys., 16, 9655–9674, 2016
https://doi.org/10.5194/acp-16-9655-2016

Special issue: Pan-Eurasian Experiment (PEEX)

Atmos. Chem. Phys., 16, 9655–9674, 2016
https://doi.org/10.5194/acp-16-9655-2016

Technical note 02 Aug 2016

Technical note | 02 Aug 2016

Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China

Yahui Che et al.

Related authors

ALBEDO RETRIEVING FROM DSCOVR/EPIC DATA AND PRELIMINARY VALIDATION
Q. Y. Tian, Q. Liu, H. W. Zhang, Y. H. Che, Y. N. Wen, Z. Shi, and J. Guang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 147–152, https://doi.org/10.5194/isprs-archives-XLII-3-W9-147-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-147-2019, 2019
VALIDATION OF AEROSOL PRODUCTS FROM ESA/AATSR OVER CHINA AND AOD FUSION BASED ON UNCERTAINTIES
Y. N. Wen, Y. H. Che, J. Guang, Y. Q. Xie, Z. Shi, Y. Zhang, and Z. Q. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 181–185, https://doi.org/10.5194/isprs-archives-XLII-3-W9-181-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-181-2019, 2019
Investigations into the development of a satellite-based aerosol climate data record using ATSR-2, AATSR and AVHRR data over north-eastern China from 1987 to 2012
Yahui Che, Jie Guang, Gerrit de Leeuw, Yong Xue, Ling Sun, and Huizheng Che
Atmos. Meas. Tech., 12, 4091–4112, https://doi.org/10.5194/amt-12-4091-2019,https://doi.org/10.5194/amt-12-4091-2019, 2019
Short summary
Towards a comprehensive view of dust events from multiple satellite and ground measurements: exemplified by the May 2017 East Asian dust storm
Lu She, Yong Xue, Jie Guang, Yahui Che, Cheng Fan, Ying Li, and Yanqing Xie
Nat. Hazards Earth Syst. Sci., 18, 3187–3201, https://doi.org/10.5194/nhess-18-3187-2018,https://doi.org/10.5194/nhess-18-3187-2018, 2018
Short summary
RETRIEVAL OF ATMOSPHERIC PARTICULATE MATTER USING SATELLITE DATA OVER CENTRAL AND EASTERN CHINA
G. L. Chen, J. Guang, Y. Li, Y. H. Che, and S. Q. Gong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 147–153, https://doi.org/10.5194/isprs-archives-XLII-3-147-2018,https://doi.org/10.5194/isprs-archives-XLII-3-147-2018, 2018

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021,https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021,https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021,https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: insights from 13 years (2007–2019) of CALIOP observations
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 15309–15336, https://doi.org/10.5194/acp-21-15309-2021,https://doi.org/10.5194/acp-21-15309-2021, 2021
Short summary
Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany
Jonas Witthuhn, Anja Hünerbein, Florian Filipitsch, Stefan Wacker, Stefanie Meilinger, and Hartwig Deneke
Atmos. Chem. Phys., 21, 14591–14630, https://doi.org/10.5194/acp-21-14591-2021,https://doi.org/10.5194/acp-21-14591-2021, 2021
Short summary

Cited articles

Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, V., Ramanathan, C. E., and Carmichael, G. R.: A regional scale chemical transport modelling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmos. Environ., 42, 8600–8615, 2008.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions, Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Bevan, S., North, P., Los, S., and Grey, W.: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR, Remote Sens. Environ., 116, 199–210, 2012.
Bilal, M., J. E. Nichol, and Chan, P. W.: Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms, Remote Sens. Environ., 153, 50–60, 2014.
Bloch, D. A. and Kraaemer, H. C.: 2 × 2 Kappa coefficients: Measures of agreement or association, Biometrics, 45, 269–287, 1989.
Download
Short summary
Remotely sensed data could provide continuous spatial coverage of aerosol property over the pan-Eurasian area for PEEX program. The AATSR data can be used to retrieve aerosol optical depth (AOD). The Aerosol_cci project provides users with three AOD retrieval algorithms for AATSR data. Because China is vast in territory and has great differences in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the Level 2 AOD products from AATSR data more comprehensively.
Altmetrics
Final-revised paper
Preprint