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Abstract. One of four main focus areas of the PEEX ini-
tiative is to establish and sustain long-term, continuous, and
comprehensive ground-based, airborne, and seaborne obser-
vation infrastructure together with satellite data. The Ad-
vanced Along-Track Scanning Radiometer (AATSR) aboard
ENVISAT is used to observe the Earth in dual view. The
AATSR data can be used to retrieve aerosol optical depth
(AOD) over both land and ocean, which is an important
parameter in the characterization of aerosol properties. In
recent years, aerosol retrieval algorithms have been devel-
oped both over land and ocean, taking advantage of the
features of dual view, which can help eliminate the contri-
bution of Earth’s surface to top-of-atmosphere (TOA) re-
flectance. The Aerosol_cci project, as a part of the Climate
Change Initiative (CCI), provides users with three AOD re-
trieval algorithms for AATSR data, including the Swansea
algorithm (SU), the ATSR-2ATSR dual-view aerosol re-
trieval algorithm (ADV), and the Oxford-RAL Retrieval of
Aerosol and Cloud algorithm (ORAC). The validation team
of the Aerosol-CCI project has validated AOD (both Level 2
and Level 3 products) and AE (Ångström Exponent) (Level

2 product only) against the AERONET data in a round-
robin evaluation using the validation tool of the AeroCOM
(Aerosol Comparison between Observations and Models)
project. For the purpose of evaluating different performances
of these three algorithms in calculating AODs over mainland
China, we introduce ground-based data from CARSNET
(China Aerosol Remote Sensing Network), which was de-
signed for aerosol observations in China. Because China is
vast in territory and has great differences in terms of land
surfaces, the combination of the AERONET and CARSNET
data can validate the L2 AOD products more comprehen-
sively. The validation results show different performances
of these products in 2007, 2008, and 2010. The SU algo-
rithm performs very well over sites with different surface
conditions in mainland China from March to October, but
it slightly underestimates AOD over barren or sparsely vege-
tated surfaces in western China, with mean bias error (MBE)
ranging from 0.05 to 0.10. The ADV product has the same
precision with a low root mean square error (RMSE) smaller
than 0.2 over most sites and the same error distribution as
the SU product. The main limits of the ADV algorithm are
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underestimation and applicability; underestimation is partic-
ularly obvious over the sites of Datong, Lanzhou, and Urum-
chi, where the dominant land cover is grassland, with an
MBE larger than 0.2, and the main aerosol sources are coal
combustion and dust. The ORAC algorithm has the ability to
retrieve AOD at different ranges, including high AOD (larger
than 1.0); however, the stability deceases significantly with
increasing AOD, especially when AOD > 1.0. In addition,
the ORAC product is consistent with the CARSNET product
in winter (December, January, and February), whereas other
validation results lack matches during winter.

1 Introduction

The Pan-Eurasian Experiment (PEEX) is a multidisciplinary,
multiscale, and multicomponent research, research infras-
tructure, and capacity-building program (Kulmala et al.,
2015). One of the strategically most important tasks of PEEX
is to fill in the observational gap in atmospheric in situ data in
the Siberian and Far East region and start the process towards
standardized and harmonized data procedures (Kulmala et
al., 2011). Aerosols play a major role in Earth’s climate sys-
tem, including intervening in the radiation budget and cloud
processes and affecting air quality and human health (Remer
et al., 2005; Samet et al., 2000; Tzanis and Varotsos, 2008;
Kokhanovsky and de Leeuw, 2009). The particles suspended
in the troposphere scatter solar radiation back to cool the at-
mosphere or absorb solar radiation, which warms the atmo-
sphere, causing changes in the net effect of aerosols. These
particles could also affect the formation and microphysical
properties of clouds as cloud condensation nuclei (Andreae
and Rosenfeld, 2008). The source of aerosols could be an-
thropogenic or natural (Varotsos et al., 2012). Particles from
different sources are mixed into aerosol masses to influence
aerosol optical depth (AOD), reduce visibility (Kinne et al.,
2003; Varotsos 2005; Remer et al., 2005), and cause spatial
and temporal variability of AOD; therefore, the largest uncer-
tainties in the estimation of radiative forcing are introduced
by aerosols (IPCC, 2013).

Over the past 35 years, different types of satellites
have been used to obtain atmospheric information, espe-
cially aerosol properties (Griggs, 1979; Kokhanovsky and de
Leeuw, 2009). Remote sensing provides a means to obtain
global and long-term observations of aerosols, especially in
the widest oceans and remote regions where ground-based
stations cannot be constructed. In addition, polar-orbiting
satellites and geostationary satellites obtain daily global im-
ages, which help to capture changes in aerosol patterns and
properties (Prins et al., 1998; Torres et al., 2002). There are,
however, many difficulties in observing aerosols by satellites
because depending on the surface properties, the contribution
to the signal received by the satellite can vary drastically;
aerosol components and concentrations are constantly vary-

ing, and their sources cannot be precisely determined (Levy
et al., 2007).

The Advanced Along-Track Scanning Radiometer
(AATSR) aboard ENVISAT is used to observe the Earth in
dual view, of which one component is nadir direction and
the other is forward direction with a viewing angle of 55◦

from nadir view. The AATSR was designed to have seven
spectral channels at wavelengths of 0.55, 0.67, 0.87, 1.63,
10.7, and 12 µm. The nadir spatial resolution is 1 km× 1 km
with a swath width of 512 pixels. Furthermore, the AATSR
instrument equipped two calibration targets: a black-body
calibration target for thermal channels and an opal visible
calibration target for visible and near-Infrared channels, aim-
ing to implement self-calibration. The data from AATSR can
be used to retrieve AOD both over land and ocean, which is
important for the characterization of aerosol properties (Ad-
hikary et al., 2008). In recent years, some aerosol retrieval
algorithms have been established both over land and ocean,
taking advantage of the features of dual view, which can help
eliminate the contribution of surface to top-of-atmosphere
(TOA) reflectance. Aerosol_CCI, as part of the Climate
Change Initiative (CCI) (http://www.esa-aerosol-cci.org/),
provides users with three algorithms for AATSR data,
including the Swansea algorithm (SU) (Bevan et al., 2012),
the ATSR-2/AATSR dual-view aerosol retrieval algorithm
(ADV) (Kolmonen et al., 2015), and the Oxford-RAL
Retrieval of Aerosol and Cloud algorithm (ORAC) (Thomas
et al., 2009). The aim of this work is to evaluate different
performances of these algorithms in calculating AOD over
different regions of China in 2007, 2008, and 2010.

A ground-based sun photometer has been used to take
sun and sky measurements directly (Holben et al., 1998).
The Aerosol Robotic NETwork (AERONET) has constructed
hundreds of sites all over the world as of 2015. These sta-
tions, operated by the American National Aeronautics and
Space Administration (NASA), are operational worldwide,
providing multispectral channel validation data for satellite-
retrieved data to complete synthetic measurements on a
global scale.

The China Aerosol Remote Sensing Network
(CARSNET) is a ground-based aerosol monitoring system
that uses CE-318 sun photometers, similar to AERONET,
and has constructed 37 sites throughout China (Che et
al., 2009). It has been established that CARSNET AOD
measurements are approximately 0.03, 0.01, 0.01, and
0.01 larger than measurements by AERONET in the 1020,
870, 670, and 440 nm channels, respectively (Che et al.,
2009). In this paper, we combine two aerosol observation
datasets from AERONET and CARSNET as reference data
to validate these three AATSR AOD products over China
more comprehensively.

The basic method for assessment is to compare the
retrieval results with data (AOD mainly) obtained by
AERONET/CARSNET. However, this direct comparison of
retrieval results with AERONET data is limited due to dif-
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ferent cloud screening processes (de Leeuw et al., 2013), and
such a limitation could influence the validation reliability to
some extent. To make the validation more reliable, compar-
ison of the retrieval results with high-quality data from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
or Multiangle Imaging Spectroradiometer (MISR) is also an
effective method for validation (Kahn et al., 2009). However,
AERONET or other ground-based networks provide accurate
measurements without the influence of land surface reflec-
tion (Holben et al., 1998), which means that comparison of
retrieved AOD with ground-based measurements is the basic
method. The AATSR L2 products provided by Aerosol_CCI
have been validated by the validation team via a round-robin
(RR) test (de Leeuw et al., 2013). On this basis, we focused
on assessing the performance of AATSR aerosol L2 products
in mainland China by comparing the retrieval results with
AERONET and CARSNET data.

2 Reference data and validation statistics

AOD is the most important parameter in terms of aerosol
properties and is different from other retrieved parameters
in the Aerosol_CCI project. The Aerosol_CCI project adopts
three aerosol retrieval algorithms for the ATSR-2/AATSR in-
strument, including the Swansea algorithm (SU) (Bevan et
al., 2012), the ATSR-2/AATSR dual-view aerosol retrieval
algorithm (ADV) (Kolmonen et al., 2015), and the Oxford-
RAL Retrieval of Aerosol and Cloud algorithm (ORAC)
(Thomas et al., 2009). All three algorithms are able to re-
trieve aerosol properties both over land and ocean. The ADV
algorithm was originally developed for retrieving AOD prop-
erties over land at wavelengths of 0.555, 0.659, and 1.61 µm
(Veefkind et al., 1998). The main advantage of ADV is the in-
troduction of a k-ratio approach to eliminate the contribution
of reflection to TOA reflectance, which uses the ratio of the
reflectance measured in the forward and nadir views (Flow-
erdew and Haigh, 1995). The ORAC algorithm is designed to
retrieve AOD properties in each of four AATSR short-wave
channels both over land and ocean, including AOD, effec-
tive radius, and surface reflectance. The build of the forward
model used in the ORAC algorithm is based on the radia-
tive transfer code DISORT. A parameterized model of sur-
face reflectance distribution is used in retrieval and combines
with the AATSR dual view to make up for the lack of a pri-
ori reflectance (North et al., 1999). An iterative optimization
method is employed to determinate AOD, aerosol type, and
surface reflectance.

AATSR L2 data (see Table 1) are daily products with a
spatial resolution of 10× 10 km2, and contain a quality flag
or a level of confidence for each pixel (de Leeuw et al., 2013).
Compared to the Level 3 (L3) product with a spatial resolu-
tion of 1◦× 1◦, daily L2 data have a higher spatial resolution,
which helps to capture greater detail of aerosol properties and

is further explored in our follow-up study/research after this
manuscript.

It has been demonstrated that the ground-based observa-
tion data from AERONET have the ability and precision to
be used as reference data when users validate AOD (Holben
et al., 1998). There are 8 AERONET sites in mainland China
providing Level 2.0 (L2) data (cloud-screened and quality-
assured) for 2007, 11 sites for 2008, and 10 sites for 2010,
from which the AOD measurement data are available on the
website. However, most of these sites are distributed in the
eastern China coastal area, as shown in Fig. 1, which, how-
ever, does not meet the requirements of comprehensively val-
idating the aerosol properties over all of China. Substantial
hazardous aerosol pollution affects most regions of north-
ern (Li, 2014) and eastern China in winter, and heavy dust
aerosols from the Taklimakan Desert in western China can
be transported long distances to eastern China, even to Japan
(Takahashi, 2011), resulting in regional differences.

The measurements from another network, CARSNET,
equipped with calibrated CE-318 instruments, have the same
accuracy as AERONET. CARSNET has more sites than
AERONET in mainland China, and the spatial distribution
of the CARSNET sites is distributed more evenly. Therefore,
for the purpose of assessing different performances of these
three AATSR L2 AOD products, we selected ground-based
measurements from both of these two networks as reference
data.

AERONET provides AOD data at three data quality lev-
els: Level 1.0 (unscreened), Level 1.5 (cloud-screened),
and Level 2.0 (cloud-screened and quality-assured) (http:
//aeronet.gsfc.nasa.gov/new_web/index.html). Here, we se-
lected AERONET L2 data that are screened and quality-
assured. Because both the AERONET and CARSNET data
are AATSR products without band-effective wavelengths,
we interpolated the ground-based data to the 550 nm wave-
length. The AOD of the L2 datasets were compared with
AERONET and CARSNET observation data using scatter
plots and linear regression of the data. The comparisons
were made for collocated satellite and ground-based obser-
vations (Ichoku et al., 2002); i.e. AOD pixels were selected
from the ground-based measurements within a spatial ex-
tent of ±25 km of ground-based stations and a time range
of ±30 min of the AATSR overpass. At least five AATSR
AOD retrievals and two AERONET or CARSNET observa-
tions are required in each collocation (Levy et al., 2010).

We conducted collocations according to year (2007, 2008,
and 2010) and dataset (ADV, ORAC, and SU). In total,
20 ground-based observation sites, including 12 AERONET
sites and 8 CARSNET sites, were in Chinese territory in
2007, of which 6 AERONET and 8 CARSNET inland sites
were selected. For 2008, we selected 8 AERONET and 24
CARSNET inland sites, for a total of 32 sites, ignoring the
island sites and those near the shoreline. For 2010, only 6
CARSNET sites are available for us, and a total of 14 in-
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Figure 1. The distribution of selected AERONET and CARSNET sites in mainland China in 2007, 2008, and 2010. The blue and red points
represent AERONET and CARNET sites, respectively.

Table 1. Details of AATSR AOD products.

Algorithm Version Sensor Main parameters Resolution coverage

ADV/ASV 2.3 AATSR AOD,ANG 10 km, 1◦ global
SU 4.21 AATSR AOD, ANG 10 km, 1◦ global
ORAC 03.04 AATSR AOD, aerosol type 10 km, 1◦ global

land sites was selected, with 8 AERONET inland sites (see
Table 2).

2.1 Statistical metrics

Collocated pairs are analysed using statistical methods. Bias
describes the average difference between satellite retrievals
and ground AOD. Then, to determine how well the satel-
lite data match the ground-based observation data, the rela-
tionship between them is explored. Some basic statistics are
shown on the scatter plot, including the root mean square er-
ror (RMSE):

RMSE=

√
1
n

∑n

i=1

(
τsat,i − τaero,i

)2
, (1)

where τaero,i represents the ground-based observation data
and τsat represents the satellite retrievals. Mean satellite-
retrieved AOD (MSA) and mean AERONET and CARSNET

Table 2. Selected ground-based sites in China.

Network Inland Near Island Total
shoreline

2007 AERONET 6 6 0 12
CARSNET 8 0 0 8
Total 14 6 0 20

2008 AERONET 8 7 0 15
CARSNET 24 1 0 25
Total 32 8 0 40

2010 AERONET 8 7 1 16
CARSNET 6 0 0 6

Total 14 7 1 20
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AOD (MAA) represent the central tendency of the data. Rel-
ative mean bias (RMB) is used to determine under- or over-
estimation of the AOD retrievals; it is the ratio of MSA to
MAA:

RMB = MSA/MAA. (2)

Mean bias error (MBE) is the mean difference between the
satellite retrievals and AATSR AODs, and the mean absolute
error (MAE) is the absolute value of the mean bias error. To-
gether with RMB, the MBE and MAE are used to determine
the magnitude of the difference between the two datasets.

2.2 κ statistics

In the scatter plot of the collocated pairs, the retrieved data
and the corresponding collocated ground-based observation
data could be considered as two arrays, and the main pur-
pose of KAPPA is to explore how these two arrays match
each other. For the retrieval of aerosol properties, the per-
formances of most algorithms decrease in effectiveness with
increasing AOD, i.e. difficulties in retrieving AOD will be
increased as AOD increases. Obviously, when only using
|bias|, the absolute value of the difference between ground-
based data and AATSR AOD data in each collocation pair,
as an assessment standard for different AODs, is insufficient
and lacks persuasion. Therefore, the combination of |bias|
and |bias|/Ground, i.e. the ratio of |bias| to the value of the
reference data in each collocation pair, used in the KAPPA
coefficient will account for this shortage and provide a new
statistic for assessing the agreement between two arrays, tak-
ing advantage of the KAPPA coefficient.

The KAPPA coefficient was originally proposed as a de-
scriptive statistic indicating the degree of beyond-chance
agreement between two ratings per subject in a dichotomous
form (Bloch and Kraaemer, 1989). KAPPA coefficients with
various forms could also be used to measure the accuracy
of thematic classifications (Rosenfield and Fitzpatrick-Lins,
1986). KAPPA is, in short, a measure of “true” agreement
(Cohen, 1960). The pairs collocated by matching ground-
based data with AATSR L2 AOD data could be regarded as
two different arrays so that we introduced the KAPPA coef-
ficient to assess agreement between these two arrays. Based
on the concept of the KAPPA coefficient proposed by Co-
hen (1960), an appropriate modification with a two-category
nominal scale is shown in Table 3.

To estimate the KAPPA coefficient, one needs to deter-
mine which pairs are true or which pairs are “relevant”. How-
ever, if only given matched collocation pairs, we cannot de-
termine which pair is relevant. Therefore, the design of cri-
terion 1 and criterion 2 needs to be reasonable and fit for the
purpose of validation.

For criterion 1, if |bias| is greater than the mean of |bias|,
then it is marked as “far from truth”, and if not, it is marked
as “close to truth”. Here, the bias was assessed from the first
quartile to the third quartile for eliminating possible “out-

Table 3. Design of the KAPPA coefficient.

Criterion 2 Total

Relevant Relevant
(highly) (low)

Criterion 1 Relevant a b G1
(highly)
Relevant c d G2
(low)

Total F1 F2 n

liers”. The |bias| only indicates the absolute error of the re-
trieved AOD, and it still needs another statistic for criterion
2, i.e. |bias|/Ground, which indicates the relative error of
AOD retrieval. For criterion 2, if |bias|/Ground| is greater
than 0.2, then it is marked as “far from truth”, and if not, it is
marked as “close to truth”. For the conventional formula of
calculating the KAPPA coefficient, see

K=
Po−Pc

1−Pc
, (3)

where Po is the proportion of observed agreement and P is
the proportion of chance agreement.

Po =
(a+ d)

n
(4)

Pc =

(
F1×G1
n

)
+

(
F2×G2
n

)
n

(5)

Algorithms for AATSR AOD retrieval used to underesti-
mate AOD over different regions in China include the ADV,
ORAC, and SU algorithms. On this basis, the agreement be-
tween ground-based observation data and satellite retrievals
is assessed based on the ADV and SU algorithms (Che et
al., 2015). The main aim of this new KAPPA coefficient is to
evaluate the comprehensive performance of these algorithms.
Its function is to represent not only the degree of underes-
timation but also the level of agreement between different
datasets.

3 Validation results and analysis

We collected different validation reference data of
AERONET and CARSNET in 2007, 2008, and 2010.
Only 14 ground-based observation sites are available in
2007, of which some are located close to each other. Most
are located in different provinces; however, the total number
of sites is small and the space distribution is not uniform.
Therefore, the number of matches is relatively small for
all of the algorithms. More AERONET and CARSNET
data are available in 2008, with a total of 32 sites, made
up of 8 AERONET sites and 24 CARSNET sites. There
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are 14 AERONET and CARSNET sites providing data for
validation in 2010. The focus of this paper is to determine
the differences between the ADV, ORAC, and SU L2 AOD
products (see Table 4 and Fig. 1). Therefore, we calculated
statistics and analysed the validation results separately by
year (see Table 4 and Fig. 1).

3.1 Validation results

3.1.1 The ADV algorithm

For 2007, the RMSE is 0.095 and the RMB is 0.704, which
reflects the tendency of underestimation. This type of under-
estimation is more severe with increasing AOD. Low dis-
persion and slight underestimation make the KAPPA coef-
ficient high (0.473), demonstrating that the ADV algorithm
performs well in calculating the AOD over China in 2007.
The ADV algorithm is appropriate for the retrieval of low
AODs, especially for those less than 1.0; thus, the MSA for
2007 is 0.244. For 2008, the lower RMB (0.621) suggests
more severe underestimation, and higher relative mean bias
(0.130) indicates lower accuracy. Similar to 2007, the MSA
of the ADV is 0.211. Therefore, the KAPPA coefficient,
which measures the overall performance, is 0.329, lower than
that of 2007. For 2010, ADV/AOD has the lowest RMSE
(0.089) with the lowest accidental error of the 3 years. How-
ever, the KAPPA coefficient is 0.180, also the lowest of the
3 years. The most obvious feature of the ADV algorithm is
underestimation with the highest MSA being 0.250 in 2007
and the lowest being 0.173 in 2010. The ADV algorithm can
retrieve low AOD values with high accuracy. This “ability” is
systematic for either high AODs or low AODs. This also lim-
its the range of application of the ADV algorithm, especially
in calculating AODs in high-value ranges.

3.1.2 The ORAC algorithm

The ORAC algorithm performed well for 2007, achieving
a KAPPA coefficient of 0.474. However, the distribution of
matches is dispersed, implying high RMSE (0.206). In terms
of the degree of fitness, its performance is not effective. How-
ever, there is no obvious trend of underestimation or overes-
timation, and accidental errors influence the accuracy of the
ORAC algorithm. The MSA of the ORAC is 0.324. ORAC
has the most matches of the three algorithms. Differently
from 2008, no obvious underestimation occurs in the results
of 2007 and 2010. For 2008, the RMB is 0.829, suggesting
a slight underestimation trend. The applicability of ORAC is
high, with MSA of 0.271. The collocated pairs are relatively
dispersed, influencing the RMSE. For 2010, the same disper-
sion of points in the scatter plot and low KAPPA coefficient
are observed. Overall, the ORAC algorithm tends to retrieve
AODs unstably for either high AODs or low AODs and with
a slight underestimation in 2007. The results of 2008 and

2010 share common features, indicating that accidental er-
ror is larger than systematic error.

3.1.3 The SU algorithm

The SU algorithm performed well for all 3 years, achieving
KAPPA coefficients of 0.409, 0.484, and 0.520, respectively.
The RMBs are 0.816, 0.713, and 0.720 for 2007, 2008, and
2010, respectively, demonstrating the underestimation of the
SU product. The applicability of SU is high, with an MSA
of 0.293 for 2008. The most obvious feature of the SU algo-
rithm is its stability in retrieving AOD for different years or
different regions (Fig. 4). The MSA ranges from 0.270 for
2010 to 0.330 for 2007, and the KAPPA coefficient ranges
from 0.520 to 0.409, which suggests that the SU algorithm
performed better at retrieving low AODs. The SU algorithm
has the best performance in terms of AOD retrieval, as it has
the highest KAPPA coefficient (0.520). Overall, the SU al-
gorithm can be applied to retrieve AOD in different ranges
with high precision. Factors influencing the performance of
the SU algorithm include a small systematic error and even a
smaller accidental error.

3.2 Uncertainty analysis based on aerosol loading

In the previous section, we validated all three AOD prod-
ucts over mainland China in 2007, 2008, and 2010, discover-
ing that all three products tend to exhibit underestimation to
some extent. For the purpose of ascertaining the causes of the
underestimation, in this section, we focus on analysing the
AOD uncertainties leading to differences between retrieved
AODs and ground-based AODs in special conditions. Collo-
cated pairs are divided into three groups according to aerosol
loading, including light loading (τ < 0.15), heavy loading
(τ > 0,4), and moderate loading (Levy et al., 2010). It is ob-
vious that the AOD bias increases with increasing AOD for
all three products. These products have one feature in com-
mon, that is, the AOD bias tends to be negative, which indi-
cates that the underestimation becomes more significant with
increasing aerosol loading. The ADV and SU algorithms per-
form well in estimating AOD, i.e. with little underestimation
(lower MBEs of −0.04 and −0.02, respectively, as shown in
Table 5), when aerosol loading is low (light loading) (Fig. 3).

Under complex conditions, the ORAC overestimates AOD
in regions of light loading and moderate loading com-
pared with AERONET and CARSNET, as shown in Fig. 3.
ADV tends to underestimate AOD more severely, with
MBE=−0.11 in a moderate aerosol loading region. Simi-
larly to ADV, the underestimation of SU in moderate aerosol
loading becomes more severe, with MBE=−0.07. ORAC
performs the best in retrieving in a moderate aerosol load-
ing regions without underestimation or overestimation, even
though the bubbles are distributed discretely with an SD of
0.18 (see in Table 5). The performances of all three algo-
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Table 4. Main statistics of the validation results.

N MSA MAA MBE MAE RMSE RMB KAPPA

AATSR ADV 2007 94 0.25 0.36 −0.11 0.12 0.15 0.70 0.49
2008 327 0.22 0.36 −0.14 0.15 0.20 0.61 0.37
2010 147 0.17 0.31 −0.14 0.14 0.22 0.55 0.23
3 years 568 0.21 0.35 −0.13 0.14 0.20 0.61 0.38

AATSR ORAC 2007 145 0.35 0.28 0.06 0.14 0.23 1.23 0.50
2008 648 0.29 0.33 −0.04 0.16 0.27 0.87 0.45
2010 298 0.26 0.27 −0.01 0.14 0.23 0.96 0.37
3 years 1091 0.29 0.31 0.02 0.15 0.25 0.93 0.44

AATSR 2007 98 0.33 0.41 −0.07 0.09 0.16 0.83 0.43
SU 2008 446 0.29 0.41 −0.12 0.13 0.21 0.72 0.50

2010 171 0.27 0.37 −0.10 0.12 0.21 0.73 0.53
3 years 715 0.29 0.40 −0.11 0.12 0.20 0.73 0.50

Figure 2. Scatter plots of AATSR ADV, ORAC, and SU L2 AOD products with ground-based data in China for the 3 years of 2007, 2008,
and 2010. The black solid line represents the 1–1 line. The magenta points are means for specific ranges of AERONET and CARSNET AOD,
and the magenta lines are the mean ±2σ of retrievals in a certain range. The areas and colours are determined by the means of uncertainty
(MU) dataset in AATSR L2 products and the standard deviation of retrievals (Std_S) in a collocation frame of 50 km× 50 km, respectively.

rithms are at the same level, with close MBEs, SDs, and RM-
SEs in heavy aerosol loading regions.

The top and bottom borders of the box we draw represent
the interval of [−2σ,2σ ], which contains most of the data
(approximately 95 %) for a given group. The data outside the
box are “possible outliers” based on the largest error con-
tained in each group. Those possible outliers have one feature
in common in that the corresponding points in the bias scat-
ter plot are far away from other points. Otherwise, the points
below or above the box are different. If a point is above the
box, which indicates that the satellite-retrieved AOD is larger
than the ground-based observed AOD, this outlier tends to
be caused by a residual cloud. The ground-based network
measures AOD from only one point; however, the satellite-
retrieved AODs in each collocated pair are an average of 25
pixels. Any one of these 25 pixels with a cloud residual will
lead to an increased AOD in a collocated pair. Therefore, we
conclude that the outliers above the box are possibly caused
by cloud residual. From this point of view, there are 6, 6,
and 2 bubbles above each box for the ADV product for light,

moderate, and heavy aerosol loading, respectively. However,
these bubbles are not possible outlier due to the means of un-
certainty (MUs) and Std_Ss being relatively small, as shown
in Fig. 3. Similarly, the bubbles from the SU product above
each box are not possible outliers. For the ORAC product,
most of the bubbles above each box are possible outliers due
to larger Std_S (> 0.2). Most possible outliers are concen-
trated in light (13 bubbles) and moderate (14 bubbles) aerosol
loading regions as shown in Table 5, influencing ORAC’s
performance in estimating AOD. The bubbles below the box
are different from those above the box. Most of them are only
below the boxes of moderate and heavy aerosol loading, in-
dicating that all these algorithms have limitations of under-
estimation in estimating AOD in moderate and heavy aerosol
loading regions, especially when the AOD loading increases.

We make these groups because aerosols exhibit different
behaviours with different loading conditions. In general, the
bias or uncertainty of satellite-retrieved AOD will increase
with increasing AOD or aerosol loading. As discussed above,
all of these algorithms underestimate AOD at different levels;
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Figure 3. Scatter plot of AERONET and CARSNET AODs with ADV AOD bias or uncertainties in China in 2007, 2008, and 2010. The
areas and colours of bubbles represent MU and Std_S sampling area of 50 km× 50 km, respectively. Colours represent different groups: blue
denotes light loading, green denotes moderate loading, and red denotes heavy loading. Each group has one box, the bottom and top borders
of which represent MBE+2σ and MBE−2σ , respectively, containing 96 % of scattered points of each group. The centre line of each box
represents the MBE of each group.

similarly, it is worth noting that underestimation becomes
more severe with increasing AOD or aerosol loading.

Additionally, we make a comparison of AOD bias, which
is retrieval errors observed, with AOD uncertainty in AOD
retrieval for each pixel the from AATSR L2 dataset. AOD
retrieval error observed (AOD bias) and AOD uncertainty in
retrieval are different as evaluating merits. The range of SU
AOD uncertainty is from 0.025 to 0.3, smaller than others,
even in heavy aerosol loading regions. Most bubbles of the
ADV product in Fig. 3. are from 0 to 0.4 of AOD uncertainty.
The AOD bias and uncertainty are small in light aerosol load-
ing and moderate for ADV and SU products, as shown in
Fig. 4. For the ORAC product, there is no obvious regular-
ity between AOD bias with AOD uncertainty in three aerosol
loading regions, especially those bubbles with high Std_S.

3.3 Uncertainty analysis of individual ground
measurement sites

For the purpose of further evaluating the different perfor-
mances of these three algorithms in estimating AOD over
mainland China, we validate these products on a site-by-site
basis. It is significant to explore the roles of different factors
in estimating AOD. There are several factors that may have
impacts on AOD calculation, including land cover, aerosol
type, and elevation. Therefore, we analyse different valida-
tion results of each site to study how these factors work (see
Table 6).

3.3.1 Intercomparison of algorithms site by site

In this section, we select five representative AERONET and
CARSNET sites with more than 30 successful matches in
2007, 2008, and 2010 to guarantee an appropriate statistical
sample size. These selected sites are located in different re-
gions where the land cover and climatic pattern are different
and representative of mainland China. Two AERONET sites

and three CARSNET sites were selected, including SACOL
and Xianghe from AERONET, and Lin’an, Shangdianzi and
Xilinhot from CARSNET. Most matches of the ADV and
SU products collocated with ground-based data occurred in
March to October in 2007, 2008 and 2010, as shown in
Figs. 5 to 9. The matches of the ORAC product were dis-
tributed in each month over most sites.

Lin’an is located at 30.3◦ N, 119.73◦ E, northwest of Zhe-
jiang province. A total of 80 % of the 50 km× 50 km sur-
rounding area is covered by green vegetation, and the other
20 % is covered with urban land. The ADV and ORAC al-
gorithm underestimated AOD, with MBE= 0.13 and 0.12
in 2010, respectively (see Fig. 5). The SU performed well
in Lin’an, with slight underestimation. The underestimation
of the ADV algorithm is more severe than that of SU and
ORAC. Although the ORAC algorithm has the most matches
in Lin’an, its performance was unstable, which means that
the level of underestimation was different in different years.

SACOL is situated along the southern bank of the Yellow
River in Lanzhou city, Gansu province. Lanzhou city has a
temperate continental climate with four clearly distinct sea-
sons. The dominant land cover is grassland, covering approx-
imately 95 % of the spatial extent of the 50 km× 50 km area
from the MODIS MCD12C1 land cover data. A total of 30%
of the surface consists of arid and semi-arid areas, which can
be a source of dust aerosols. SU performs well in retrieving
AOD over SACOL, with a low RMSE (0.072). The acciden-
tal error in the retrievals using the ORAC algorithm is obvi-
ous, leading to a high RMSE (0.170). However, as discussed
above, the ADV algorithm severely underestimated AOD in
SACOL. The ADV algorithm tended to severely underesti-
mate the AOD of different ranges, except for a small num-
ber of high-quality matches. The matches of the SU product
are of high quality for the 3 years. The ORAC has collo-
cated matches in January, February, November, and Decem-
ber (winter time), unlike the ADV and SU products. How-
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Table 5. Statistics of comparison between AOD bias and ground-based measurements. Proportion is the ratio of the number of bubbles
falling in each box to the total number. RMSE1 and RMSE2 are RMSEs of AOD bias with ground-based measurement and AOD uncertainty,
respectively.

Algorithm Class N Proportion MBE RMSE_ SD Above Below RMSE2

AATSR Total 568 100.0 % −0.13 0.20 0.15 14 14 0.27
ADV Light 126 22.2 % −0.04 0.03 0.04 6 0 0.07

Moderate 259 45.6 % −0.11 0.10 0.09 6 6 0.22
Heavy 183 32.2 % −0.23 0.17 0.20 2 8 0.35

AATSR Total 1091 100.0 % 0.02 0.25 0.25 32 8 3.65
ORAC Light 347 31.8 % 0.059 0.10 0.17 13 0 0.13

Moderate 468 42.9 % 0 0.11 0.18 14 2 0.28
Heavy 276 25.3 % −0.16 0.20 0.36 5 6 5.56

AATSR Total 715 100.0 % −0.11 0.20 0.17 8 22 0.24
SU Light 147 20.6 % −0.02 0.02 0.04 3 1 0.08

Moderate 306 42.8 % −0.07 0.07 0.08 5 12 0.16
Heavy 262 36.6 % −0.2 0.19 0.23 0 9 0.34

Figure 4. Scatter plots of ADV, ORAC, and SU AOD uncertainty with AOD bias over China for the 3 years of 2007, 2008, and 2010. The
area and colours of bubbles represent Std_S and AOD, respectively.

ever, the accuracy of ORAC in winter is highly uncertain, as
shown in Fig. 6.

Shangdianzi is situated at 40.15◦ N, 94.68◦ E, with com-
plex land cover of approximately 45 % cropland, 30 % mixed
forest, 18 % closed shrubland, 5 % grassland, 1 % water, and
1 % evergreen needle leaf forest. The SU algorithm has high
precision in AOD calculation over this site from March to
October, when most of the land cover is green. The ADV
algorithm also performs well in calculating AOD over these
three sites, with a slight underestimation. The performance of
the ORAC algorithm in Shangdianzi is unstable, with strong
agreement with ground-based data from March to October
and severe underestimation in winter, as shown in Fig. 7.

Xianghe is located to the southeast of Beijing and has the
same climatic conditions as Beijing. Approximately 98 %
of the surface is covered with urban land according to the
MCD12C1 data of a 50 km× 50 km area. The performances
of these three algorithms are at the same high-quality level
(see Fig. 8). However, the ADV algorithm still underesti-

mated AOD at a level of MBE= 0.12 in 2007 and 0.10 in
2008.

Xilinhot is situated at 43.95◦ N, 116.07◦ E, at the centre of
the Xilinguole grassland. The main land cover is grassland
(100 %) based on the MODIS MCD12C1 data, with a spatial
extent of 50 km× 50 km. The surface and climate features of
Xilinhot are similar to those of SACOL, and the performance
of the SU algorithm at these two sites is the same, i.e. both
with low RMSE (see Fig. 9). The ADV algorithm slightly un-
derestimated AOD, with an MBE of 0.10–0.13. The ORAC
AOD showed weak agreement with the Xilinhot data, mainly
because possible outliers exist in March to June 2008 and
March 2010.

To guarantee statistical reliability, there must be more than
30 collocated pairs at one site. The determination of the sur-
face cover at each site is based on the proportion (> 80 % for
one land type) of each land cover type from the MCD12C1
data at a spatial extent of 50 km× 50 km. If no land cover
type accounts for a proportion larger than 80 % at a given
site, it will be identified as mixed; then, we select two or
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Table 6. Statistics of validation results of different products over different sites.

Site Algorithm N MSA MAA MBE MAE RMSE RMB KAPPA

Lin’an ADV 33 0.346 0.462 −0.116 0.122 0.088 0.748 0.341
ORAC 48 0.426 0.470 −0.044 0.131 0.144 0.906 0.668
SU 40 0.430 0.484 −0.054 0.082 0.093 0.889 0.650

SACOL ADV 46 0.156 0.285 −0.129 0.132 0.068 0.547 0.283
ORAC 74 0.286 0.314 −0.028 0.102 0.170 0.910 0.595
SU 49 0.265 0.291 −0.027 0.062 0.072 0.908 0.878

Shangdianzi ADV 52 0.172 0.297 −0.125 0.131 0.087 0.578 0.339
ORAC 66 0.267 0.304 −0.037 0.107 0.134 0.879 0.407
SU 46 0.285 0.402 −0.117 0.128 0.101 0.710 0.457

Xianghe ADV 33 0.184 0.284 −0.100 0.102 0.070 0.649 0.169
ORAC 34 0.227 0.240 −0.013 0.091 0.096 0.946 0.577
SU 36 0.368 0.392 −0.024 0.058 0.077 0.939 0.444

Xilinhot ADV 49 0.082 0.198 −0.116 0.117 0.046 0.414 0.148
ORAC 110 0.190 0.182 0.008 0.109 0.166 1.043 0.389
SU 61 0.140 0.220 −0.081 0.085 0.063 0.634 0.444

Figure 5. Time series comparison of AATSR AOD with CARSNET AOD at Lin’an in 2008 and 2010.

more (sum > 80 %) land types with the largest proportions
as the main land cover. As the data volume is too low to in-
fer the year-to-year variability of performance at these sites,
the analysis gives some useful information, but it is impor-
tant not to overinterpret results from a small selection of data
points.

3.3.2 Analysis of algorithm performances in western
China

Because sufficient ground-based data in western China
are lacking for the AERONET measurements, only data
from CARSNET sites are used in 2008. We selected six

CARSNET sites located in western China in which there are
more than 25 matches.

Urumchi, situated at 43.78◦ N, 87.62◦ E, serves as the
provincial capital of Xinjiang Uyghur Autonomous Region
and is the most remote city in China in terms of distance
to any sea. The dominant land cover at the spatial extent
of 50 km× 50 km is grassland, which accounts for approx-
imately 85 %. The ADV, ORAC, and SU algorithms all
severely underestimated AOD, with MBE= 0.22, 0.12, and
0.17, respectively. The MBE is lowest mainly because of the
outlier in April, which decreases the MBE (see Fig. 10).
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Figure 6. Time series comparison of AATSR AOD with AERONET AOD at SACOL in 2007, 2008, and 2010.

Ejina is situated at 41.95◦ N, 101.07◦ E, and its main land
cover is barren ground (84 %). The performances of ORAC
and SU are at the same high-quality level, with MBEs of 0.02
and 0.09, respectively. Another reason why we chose this
site is that there are no matches of ADV products success-
fully collocated with ground-based data. Based on Fig. 11,
the ORAC algorithm has strong applicability in Ejina and
high accuracy in retrieving AOD. The SU algorithm also
performed well. This demonstrates that another limitation of
the ADV algorithm is its applicability in calculating AOD
in China. Dunhuang is situated at 40.15◦ N, 94.68◦ E and
is surrounded by barren ground (85 %). The same situation
is true for Ejina, which causes a slight underestimation at
each point but high R and low RMSE for the ORAC al-
gorithm (Fig. 12). The performance of the SU algorithm
was not as good as that of the ORAC because of its un-
derestimation with MBE= 0.10. The limits of underestima-
tion and applicability of the ADV were more obvious at this
site, as it only had six matches and showed severe under-
estimation with MBE= 0.17. Tazhong is situated at 39◦ N,
83.67◦ E and is surrounded by barren or sparsely vegetated
surface. Almost all land cover is barren ground according to
the MODIS MCD12C1 data. Similar to the former two sites,
the ADV product did not have any successful matches at this

Table 7. DR distribution of specific sites.

Site DR < 1 1 < DR < 3 3 < DR < 5 5 < DR Total

Urumchi 47 40 2 1 90
Ejina 51 43 1 1 96
Tazhong 63 17 5 3 88
Dunhuang 57 31 1 2 91

site (Fig. 13). Both the ORAC and SU algorithms exhib-
ited severe underestimation of retrievals, with MBE= 0.17
and 0.20, respectively. The outliers of the ORAC product in
February are much higher than the observation data, causing
the lower MBE.

The prevailing climatic pattern in western China is a tem-
perate continental climate with four distinct seasons and less
precipitation in winter and spring. In conclusion, compared
to eastern China, the applicability of the ADV algorithm is
not strong, and the underestimation is more severe. In the
four selected sites in western China, the performance of the
ORAC algorithm is best, even though severe underestimation
occurs at some sites. The accuracy of the SU algorithm is not
as high as the ORAC product, with more severe underestima-
tion and lower applicability.
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Figure 7. Time series comparison of AATSR AOD with CARSNET AOD at Shangdianzi in 2007, 2008, and 2010.

Table 8. Seasonal distribution of validation results of three algorithms.

N MSA MAA MBE MAE RMSE RMB KAPPA

AATSR Spring 186 0.26 0.41 −0.16 0.16 0.23 0.62 0.4
ADV Summer 164 0.16 0.29 −0.13 0.14 0.19 0.54 0.26

Autumn 190 0.2 0.32 −0.12 0.13 0.17 0.62 0.36
AATSR Spring 294 0.35 0.37 −0.02 0.18 0.3 0.95 0.5
ORAC Summer 296 0.28 0.35 −0.07 0.17 0.26 0.79 0.4

Autumn 265 0.23 0.22 0.01 0.1 0.16 1.04 0.43
Winter 230 0.29 0.28 0.01 0.15 0.25 1.03 0.38

AATSR Spring 222 0.3 0.42 −0.12 0.14 0.24 0.72 0.53
SU Summer 241 0.32 0.43 −0.11 0.13 0.2 0.74 0.49

Autumn 237 0.26 0.35 −0.09 0.11 0.16 0.74 0.49

3.3.3 Intercomparison

In conclusion, the SU algorithm performs well in calculat-
ing AOD over different land covers from March to October.
Slight underestimation occurs over barren ground or sparse
vegetation at different times, and there are no obvious fea-
tures in terms of precision in the time series over grasslands.
For complex land surfaces where the dominant land cover is
vegetation, the SU algorithm is extremely effective in esti-
mating AOD. In the last section, we draw the conclusion that

the SU algorithm underestimates AOD over mainland China
in 2008 probably because the dominant land cover in west-
ern China is barren or sparse vegetation, over which the SU
algorithm underestimates AOD more severely.

The ADV algorithm underestimates AOD at most of the
selected sites. We categorize these sites as four classes ac-
cording to the MBEs of different sites: Class 1 (MBE < 0.1),
Class 2 (0.2 > MBE > 0.1), Class 3 (0.3 > MBE > 0.2), and
Class 4 (MBE > 0.3). The ADV algorithm underestimates
AOD over all selected sites, leading to all selected MBEs
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Figure 8. Time series comparison of AATSR AOD with AERONET AOD at Xianghe in 2007, 2008, and 2010.

Figure 9. Comparison of SU AOD with CARSNET AOD at Xilinhot in 2008 and 2010.

being larger than 0. We make such categories for the purpose
of assessing the contribution of different surfaces to AOD
estimation. Only Xianghe of 2008 belongs to Class 1, and
Lin’an, Shangdianzi, and SACOL are classified as Class 2.

Only Urumchi is in Class 3. Note that even though Lanzhou
and Datong were not selected due their location, they should
be classified as Class 4.
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Figure 10. Time series comparison of AATSR AOD with CARSNET AOD at Urumchi in 2008.

Figure 11. Time series comparison of AATSR AOD with CARSNET AOD at Ejina in 2008.

Overall, the ADV algorithm underestimates AODs at all
sites but at different levels, as demonstrated by the above
categories. Serious underestimation occurs over the sites in
Class 3 and Class 4 in western China, where the dominant
land cover is a mixing of urban area and a large portion of
grasslands. For the sites in Class 2, differences exist between
Beijing and SACOL. SACOL is similar to the sites in Class 3
and Class 4, the main land cover of which is grassland. Over
the sites in Class 1, the algorithm performs well with high R
and low MBE, but there are no common features in terms of
surface conditions.

The ORAC product collocates most pairs of all of these
products. Most collocated pairs of the SU product and ADV
product occur in March to October, but the collocated pairs of
the ORAC product occur during each month over some sites
in 2008. Because more matches suggest greater errors for the
determination of the outlier contribution to the overall per-
formance of the ORAC algorithm, we introduce the ratio of
the individual difference to average the differences for each
site:

DR=

∣∣τaero,i − τsate,i
∣∣(∑n

i=1
∣∣τaero,i − τSate,i

∣∣)/n, (6)

where DR < 1 indicates a “relatively good” match, 3 > DR > 1
indicates a “relatively poor” match, and DR > 3 is an outlier
(see Table 7).

There are no obvious possible outliers in Ejina shown in
Fig. 11. Most of the DRs are in the range of 0 to 3, only two
DRs are larger than 3, and the maximum (overestimation) is
5.112. The retrieved AOD in March is a possible outlier be-

cause it is overestimated, whereas most are underestimated.
Another two sites dominated by barren or sparsely vegetated
land cover are Dunhuang (approximately 85 %) and Tazhong
(100 %). The conditions in Tazhong are complex, and there
is no obvious relationship between the CARSNET data and
the ORAC AODs. Most of the DRs are less than 3, and a to-
tal of eight DRs are larger than 3. The DR in February is an
outlier because the varying tendencies are different between
the ORAC product and the ground-based data, indicative of
overestimation.

The ORAC product has the largest coverage, at the ex-
pense of accuracy, especially in the presence of outliers, and
only the ORAC product has collocated validation pairs over
some sites during each month in all 3 years. The ORAC algo-
rithm underestimates AODs over Ejina, Tazhong, and Dun-
huang, but the possible outliers reduce the differences be-
tween the CARSNET data and the ORAC product. Xilin-
hot, Urumchi, and SACOL share the same main land cover
of grassland. The problem is that the underestimations over
these sites are not at the same level.

It is worth noting that the ORAC algorithm has the ability
to calculate high AOD; however, most of the AODs have DRs
larger than 3, indicating that the estimation of high AOD is
unstable and has large error, reducing the overall precision.

3.4 Seasonal characteristics of three algorithms

Mainland China, covering about 60◦ of longitude and 30◦ of
latitude, is dominated by a monsoon-driven climate. In such
a vast territory, there are big differences in climate patterns
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Figure 12. Time series comparison of AATSR AOD with CARSNET AOD at Dunhuang in 2008.

Figure 13. Time series comparison of AATSR AOD with CARSNET AOD over the site of Tazhong in 2008.

between western and eastern China. The main climate type in
eastern and eastern coastal China is a monsoon climate. For
western China far from the ocean, the climate type is a hybrid
of a monsoon and continental climate. In dry seasons (win-
ter, first half of spring, and last half of autumn), poor veg-
etation coverage, loose surface, and winds in most northern
China regions turn coarse particles (sea salt and desert dust)
into aerosol. Fine particles from coal combustion in winter
and soot from straw burning in autumn are also an impor-
tant source of aerosol. In rainy seasons (mainly in summer),
high vegetation blocks dust being blown as aerosol and re-
duces surface reflectance in the visible wavelength. Table 8
shows the seasonal distribution of the validation results of
the three algorithms. For mainland China, which is located
in the Northern Hemisphere from 20–55◦ N, the spring time
starts on about March to May, the summer time starts in about
June to August, the autumn time starts in about September to
November, and the winter time is from about December to
February of the next year.

Low MUs at 550 nm means that these retrievals are of
high quality in Fig. 2. Most Std_S are below 0.08, indicating
high uniformity of ADV products (see Fig. 2). Most collo-
cated pairs of ADV AODs are concentrated below the 1–1
line, and the RMB is 0.61, showing a tendency to underes-
timate. This kind of underestimation has an impact on ADV
algorithm performances; for example, the RMSE is 0.19 in
summer time, otherwise, the corresponding RMB is 0.54,
which makes the KAPPA coefficient the smallest (0.26) of
all seasons. The MBEs are from −0.12 in autumn to −0.16
in spring in Table 8, which means that the ADV algorithm

tends to underestimate AOD in all seasons (except winter)
over mainland China (See Fig. 13). For the monsoon climate,
the main aerosol types in many parts of China are influenced
by coarse particles (dust from western China and sea salt
from eastern coastal China) in spring time. The performance
in calculating aerosol properties of a mixture of coarse par-
ticles is best in spring time, with the highest KAPPA coef-
ficient, even though there are some samples with high MUs
and the RMSE is 0.23.

The matches of the ORAC product collocated with refer-
ence data are distributed discretely at two sides of the 1–1
line in Fig. 2. The best performance, with a high KAPPA co-
efficient of 0.5, is in spring with no underestimation, even
though the RMSE is high (about 0.30). The KAPPA coef-
ficient in the autumn time is lower than in the spring time,
even though most evaluation metrics are better in the autumn.
Note that only the ORAC product of these three products col-
located enough matches (more than 30) with reference data
in the winter time. The performance of ORAC in winter is
between that in spring and autumn without obvious under-
estimation or overestimation. The limitation of the ORAC
algorithm is the stability in retrieving aerosol properties, as
shown in Fig. 14: the magenta mean ±2σ lines for each sea-
son in each range are longer than those for the other two
products.

The SU algorithm has better performances in 3 years, get-
ting KAPPA coefficients of 0.50. Most retrievals in matches
are of high quality collocated with reference data and most
Std_S are lower than 0.08; i.e. the sample quality is high and
this coincides with an assumption of aerosol property uni-
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Figure 14. Scatter plots of AATSR ADV, ORAC, and SU L2 AOD products with ground-based data in China in the spring, summer, autumn,
and winter time of 2007, 2008, and 2010.

formity in a 50 km× 50 km area. The best performance on
retrieval is in the autumn, with the lowest RMSE being 0.16
and the largest RMB being 0.74 in three seasons shown in
Fig. 14. The magenta lines are similar to those of the ADV
product in corresponding seasons, showing same level of sta-
bility in retrieving AOD. The SU algorithm has no obvious
differences in retrieving AOD in three seasons. One limita-

tion of the SU and ADV algorithms is less than 30 collocated
matches in the winter time so that we cannot evaluate its per-
formance during that time.

The latest MODIS Collection 6 (C6) products were re-
leased in 2013, including aerosol datasets produced by two
“dark target” (DT) algorithms (one is for retrieving over
ocean and the other is for retrieving over land) and the Deep
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Figure 15. Scatter plot of AATSR AOD and DT and DB AOD.

Figure 16. Comparisons of Ångström exponent of ORAC and SU products. The area and colours of bubbles represent AOD uncertainty and
AOD values, respectively.

Blue (DB) algorithm for retrieving over bright or semi-arid
surface (Levy et al., 2013). For over land, the DT algorithm
uses an updated cloud mask to allow the retrieval of heavy
aerosol compared to the algorithm employed in MODIS Col-
lection 5. It is reported that MODIS C6 products (produced
by three algorithms) are of high quality (Sayer at el., 2014).
Here, we select both MODIS C6 DT and DB 10 km× 10 km
merged datasets as reference data for cross-validation of
AATSR L2 AOD products. The matches in Fig. 15 are ran-
domly chosen from MODIS and AATSR collocated AOD
datasets. The ADV AOD has a lowest RMSE of 0.11. The
SU algorithm has the same performance as ORAC (similar
RMSE and KAPPA) but with a little underestimation, repre-
sented as the magenta line in Fig. 15.

The aerosol Ångström exponent is an exponent that ex-
presses the spectral dependence of aerosol optical thickness
with the wavelength of incident light (Eck et al., 1999). The
Ångström exponent is inversely related to the average size
of the particles in the aerosol: the smaller the particles, the

larger the exponent. Thus, the Ångström exponent is a useful
quantity to assess the particle size of atmospheric aerosols
or clouds and the wavelength dependence of the aerosol or
cloud optical properties.

The ORAC product provides the Ångström exponent for
550–870 µm only and the SU product provides the Ångström
exponent for 550–870 µm only. The CARSNET dataset pro-
vides the Ångström exponent for 440–870 µm only. As the
ADV product provides the Ångström exponent for 550–
670 µm only, we could not carry out a comparison for the
ADV Ångström exponent. We compared the Ångström ex-
ponent using both CARSNET and AERONET datasets for
SU and ORAC products. Figure 16 shows the comparisons of
the Ångström exponent. In general, both the SU and ORAC
algorithms generate a similar quality of Ångström exponent
values. There is no pattern linking the Ångström exponent
with AOD values and uncertainty.

www.atmos-chem-phys.net/16/9655/2016/ Atmos. Chem. Phys., 16, 9655–9674, 2016
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4 Conclusions

Satellite remote sensing of the atmosphere is one impor-
tant aspect in the PEEX scientific plan. Remotely sensed
data could provide continuous spatial coverage of aerosol
property over the pan-Eurasian area. These three algorithms
(the SU algorithm, the ADV algorithm, and the ORAC al-
gorithm) display different performances in estimating AOD
over mainland China in 2007, 2008, and 2010. However,
none of the algorithms show an explicitly better performance
than the other two. The SU and ADV products have a higher
accuracy over most selected sites but less coverage, whereas
the ORAC product has greater coverage at the cost of accu-
racy.

All of these algorithms tend to underestimate AOD to
some degree. The underestimation becomes more severe
with increasing AOD or aerosol loading. The method of
grouping helps to identify possible outliers in different re-
gions of aerosol loading.

The precision of the SU and ADV algorithms is at the same
level over different surfaces. However, the SU product has
stricter quality control than the ADV product, and it elim-
inates AODs to make the MBE less than 0.10 over differ-
ent sites (de Leeuw et al., 2013). Over grassland and barren
vegetation, the SU displays a strong performance with slight
underestimation (MBE < 0.10). The limitations of underesti-
mation and the applicability of the ADV are more obvious
over such sites. For complex surfaces with two or more land
cover types, the performances of these three algorithms are
at the same level. Note that Lanzhou and Datong are differ-
ent from other sites, even though the main land cover type is
grassland. All of these algorithms underestimated AOD at a
high level, perhaps because these algorithms are not sensitive
to absorptive aerosols.

Only the ORAC product shows possible outliers identi-
fied by Eq. (2), which substantially decreases its accuracy.
The most obvious feature of the possible outliers is that the
retrieved AODs are higher than the ground-based measure-
ments.

As reference data, AERONET L2 data have some limita-
tions, including the distribution and number of sites in main-
land China. Most sites of AERONET are distributed in east-
ern China and the coastal region of China for special exper-
imental use; as a result, sufficient reference data cannot be
obtained to validate the AOD product. The CARSNET data
make up for this shortage because there are more CARSNET
sites in China, especially in western China, where few
AERONET sites have been constructed. Limited both by ref-
erence data and satellite retrievals, most co-allocated pairs
occur in March to November, and a few occur in winter (De-
cember, January, and February).

5 Data availability

The ESA Aerosol_cci AOD research data (ADV, ORAC
and SU) used in this publication are publicly available at
http://www.icare.univ-lille1.fr/cci. The MODIS AOD data
are available via http://modis-atmos.gsfc.nasa.gov/MOD04_
L2/. AERONET data have been downloaded from http://
aeronet.gsfc.nasa.gov/.
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