Articles | Volume 15, issue 10
Atmos. Chem. Phys., 15, 5873–5885, 2015
https://doi.org/10.5194/acp-15-5873-2015
Atmos. Chem. Phys., 15, 5873–5885, 2015
https://doi.org/10.5194/acp-15-5873-2015

Research article 27 May 2015

Research article | 27 May 2015

Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar

J. Tonttila et al.

Related authors

Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-757,https://doi.org/10.5194/acp-2021-757, 2021
Preprint under review for ACP
Short summary
The effect of marine ice nucleating particles on mixed-phase clouds
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-537,https://doi.org/10.5194/acp-2021-537, 2021
Revised manuscript under review for ACP
Short summary
The effect of black carbon on aerosol-boundary layer feedback: Potential implications for Beijing haze episodes
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-139,https://doi.org/10.5194/acp-2021-139, 2021
Revised manuscript under review for ACP
Short summary
Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021,https://doi.org/10.5194/acp-21-1035-2021, 2021
Short summary
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020,https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630, https://doi.org/10.5194/acp-21-16609-2021,https://doi.org/10.5194/acp-21-16609-2021, 2021
Short summary
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021,https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021,https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021,https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021,https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary

Cited articles

Babb, D. M. and Verlinde, J.: Vertical velocity statistics in continental stratocumulus as measured by a 95 GHz radar, Geophys. Res. Lett., 86, 1177–1180, 1999.
Banakh, V. A., Smalikho, I. N., Köpp, F., and Werner, C.: Measurements of Turbulent Energy Dissipation Rate with a CW Doppler Lidar in the Atmospheric Boundary Layer, J. Atmos. Ocean. Tech., 16, 1044–1061, 1999.
Christensen, M. W., Carrió, G. G., Stephens, G. L., and Cotton, W. R.: Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus, J. Atmos. Sci., 70, 3102–3118, https://doi.org/10.1175/JAS-D-12-0287.1, 2013.
Duynkerke, P. G., Zhang, H., and Jonker, P. J.: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX, J. Atmos. Sci., 52, 2763–2777, 1995.
Frisch, A. S., Lenschow, D. H., Fairall, C. W., Schubert, W. H., and Gibson, J. S.: Doppler radar measurements of turbulence in marine stratiform cloud during ASTEX, J. Atmos. Sci., 52, 2800–2808, 1995.
Download
Altmetrics
Final-revised paper
Preprint